In order to study the effect of pure torsional forces upon the rotational development of the growing tibia, 35 immature rabbits underwent torsional loading of one tibia in
There is little information about the effects of extracorporeal shock-wave about application the effects (ESWA) of on normal bone physiology. We have therefore investigated the effects of ESWA on intact distal rabbit femora in
At yearly intervals we compared the radiological wear characteristics of 81 alumina ceramic femoral heads with a well-matched group of 43 cobalt-chrome femoral heads. Using a computer-assisted measurement system we assessed two-dimensional penetration of the head into the polyethylene liner. We used linear regression analysis of temporal data of the penetration of the head to calculate the true rates of polyethylene wear for both groups. At a mean of seven years the true rate of wear of the ceramic group was slightly greater (0.09 mm/year, SD 0.07) than that of the cobalt-chrome group (0.07 mm/year, SD 0.04). Despite the numerous theoretical advantages of ceramic over cobalt-chrome femoral heads, the wear performance in
Aims
Patients and Methods
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
The Intraosseous Transcutaneous Amputation Prosthesis (ITAP)
may improve quality of life for amputees by avoiding soft-tissue
complications associated with socket prostheses and by improving
sensory feedback and function. It relies on the formation of a seal
between the soft tissues and the implant and currently has a flange
with drilled holes to promote dermal attachment. Despite this, infection
remains a significant risk. This study explored alternative strategies
to enhance soft-tissue integration. The effect of ITAP pins with a fully porous titanium alloy flange
with interconnected pores on soft-tissue integration was investigated.
The flanges were coated with fibronectin-functionalised hydroxyapatite
and silver coatings, which have been shown to have an antibacterial
effect, while also promoting viable fibroblast growth Aims
Materials and Methods
We studied the kinetics of the knee in 20 patients (22 knees) 12 months after total knee arthroplasty (TKA), by using three-dimensional radiostereometry and film-exchanger techniques. Eleven knees had a concave (constrained) tibial implant and 11 a posterior-stabilised prosthesis. Eleven normal knees served as a control group. In the posterior-stabilised knees there was less proximal and posterior displacement of the centre of the tibial plateau during extension from 45° to 15°, with a decrease in the anterior translation of the femoral condyles of 4 mm at 45°. There was less internal tibial rotation and increased distal positioning of the centre of the tibial plateau with both designs when compared with the normal knees, and in both the centre of the plateau was displaced posteriorly by more than 1 cm. Increased AP translation has been recorded in all prosthetic designs so far studied by radiostereometry. The use of a posterior-stabilised design of tibial insert could reduce this translation but not to that of the normal knee.
The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint.Objective
Methods
We carried out weight-bearing video radiological studies on 40 patients with a total knee arthroplasty (TKA), to determine the presence and magnitude of femoral condylar lift-off. Half (20) had posterior-cruciate-retaining (PCR) and half (20) posterior-cruciate-substituting (PS) prostheses. The selected patients had successful arthroplasties with no pain or instability. Each carried out successive weight-bearing knee bends to maximum flexion, and the radiological video tapes were analysed using an interactive model-fitting technique. Femoral lift-off was seen at some increment of knee flexion in 75% of patients (PCR TKA 70%; PS TKA 80%). The mean values for lift-off were 1.2 mm with a PCR TKA and 1.4 mm with a PS TKA. Lift-off occurred mostly laterally with the PCR TKA, and both medially and laterally with the PS TKA. Separation between the femoral condyles and the articular surface of the tibia was recorded at 0°, 30°, 60° and 90° of flexion. Femoral condylar lift-off may contribute to eccentric polyethylene wear, particularly in designs of TKA which have flatter condyles. Coronal conformity is an important consideration in the design of a TKA.
Tissue reaction to wear particles from metal implants may play a major role in the aseptic loosening of implants. We used electron microprobe elemental analysis to determine the chemical composition of wear particles embedded in the soft tissues around hip and knee implants from 11 patients at revision surgery for aseptic loosening. The implants were made of cobalt-chromium-molybdenum alloy or titanium-aluminium-vanadium alloy. Histological examination showed a widespread giant-cell reaction to the particles. Elemental analysis showed that the chemical composition of the particles was different from that of the implanted alloys: cobalt and titanium were reduced, often down to zero, whereas chromium and aluminium persisted. Our findings indicate that corrosion is continually changing the shape, size and chemical composition of the implanted alloy. This may alter the biochemical environment of the tissue surrounding an implant to favour bone resorption.
Osteoid osteoma is treated primarily by radiofrequency
(RF) ablation. However, there is little information about the distribution
of heat in bone during the procedure and its safety. We constructed
a model of osteoid osteoma to assess the distribution of heat in
bone and to define the margins of safety for ablation. Cavities
were drilled in cadaver bovine bones and filled with a liver homogenate
to simulate the tumour matrix. Temperature-sensing probes were placed
in the bone in a radial fashion away from the cavities. RF ablation
was performed 107 times in tumours <
10 mm in diameter (72 of
which were in cortical bone, 35 in cancellous bone), and 41 times
in cortical bone with models >
10 mm in diameter. Significantly
higher temperatures were found in cancellous bone than in cortical
bone (p <
0.05). For lesions up to 10 mm in diameter, in both
bone types, the temperature varied directly with the size of the
tumour (p <
0.05), and inversely with the distance from it. Tumours
of >
10 mm in diameter showed a trend similar to those of smaller
lesions. No temperature rise was seen beyond 12 mm from the edge
of a cortical tumour of any size. Formulae were developed to predict
the expected temperature in the bone during ablation. Cite this article:
We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks. The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022). The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.
Injuries to the sciatic nerve are an occasional complication of surgery to the hip and acetabulum, and traction is frequently the causative mechanism. In vitro and animal experiments have shown that increased tensile strain on peripheral nerves, when applied for prolonged periods, impairs nerve function. We have used video-extensometry to measure strain on the human sciatic nerve during total hip replacement (THR). Ten consecutive patients with a mean age of 72 years undergoing primary THR by the posterior approach were recruited, and strains in the sciatic nerve were measured in different combinations of flexion and extension of the hip and knee, before dislocation of the hip. Significant increases (p = 0.02) in strain in the sciatic nerve were observed in flexion of the hip and extension of the knee. The mean increase was 26% (19% to 30%). In animal studies increases of this magnitude have been shown to impair electrophysiological function in peripheral nerves. Our results suggest that excessive flexion of the hip and extension of the knee should be avoided during THR.
We have compared the rates of infection and resistance in an animal model of an orthopaedic procedure which was contaminated with a low-dose inoculum of
Aims. Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in
Aims. To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. Methods. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in
Aims. Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism. Methods. In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In
Aims. To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods. Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in