Pulsed electromagnetic field (PEMF) stimulation was evaluated after anterior cervical discectomy and fusion (ACDF) procedures in a randomized, controlled clinical study performed for United States Food and Drug Administration (FDA) approval. PEMF significantly increased fusion rates at six months, but 12-month fusion outcomes for subjects at elevated risk for pseudoarthrosis were not thoroughly reported. The objective of the current study was to evaluate the effect of PEMF treatment on subjects at increased risk for pseudoarthrosis after ACDF procedures. Two evaluations were performed that compared fusion rates between PEMF stimulation and a historical control (160 subjects) from the FDA investigational device exemption (IDE) study: a Objectives
Methods
The medial malleolus, once believed to be the primary stabilizer of the ankle, has been the topic of conflicting clinical and biomechanical data for many decades. Despite the relevant surgical anatomy being understood for almost 40 years, the optimal treatment of medial malleolar fractures remains unclear, whether the injury occurs in isolation or as part of an unstable bi- or trimalleolar fracture configuration. Traditional teaching recommends open reduction and fixation of medial malleolar fractures that are part of an unstable injury. However, there is recent evidence to suggest that nonoperative management of well-reduced fractures may result in equivalent outcomes, but without the morbidity associated with surgery. This review gives an update on the relevant anatomy and classification systems for medial malleolar fractures and an overview of the current literature regarding their management, including surgical approaches and the choice of implants. Cite this article: Abstract
The aim of this study was to utilize a national paediatric inpatient database to determine whether obesity influences the operative management and inpatient outcomes of paediatric limb fractures. The Kids’ Inpatient Database (KID) was used to evaluate children between birth and 17 years of age, from 1997 and 2012, who had undergone open and closed treatment of humeral, radial and ulna, femoral, tibial, and ankle fractures. Demographics, hospital charges, lengths of stay (LOS), and complications were analyzed.Aims
Patients and Methods
This paper documents the epidemiology of adults (aged more than 18 years) with a calcaneal fracture who have been admitted to hospital in England since 2000. Secondary aims were to document whether publication of the United Kingdom Heel Fracture Trial (UK HeFT) influenced the proportion of patients admitted to hospital with a calcaneal fracture who underwent surgical treatment, and to determine whether there has been any recent change in the surgical technique used for these injuries. In England, the Hospital Episode Statistics (HES) data are recorded annually. Between 2000/01 and 2016/17, the number of adults admitted to an English NHS hospital with a calcaneal fracture and whether they underwent surgical treatment was determined.Aims
Patients and Methods
Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients’ BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05.Objectives
Method
We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component, as assessed by morphometric geometrical analysis, and its reliability. A total of 52 Crowe IV hips (42 patients; seven male, 35 female; mean age 68.5 years (32 to 82)) and 50 normal hips (50 patients; eight male, 42 female; mean age 60.7 years (34 to 86)) undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiological inclination of 40° and anteversion of 20°. Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis.Aims
Patients and Methods
Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.Objectives
Methods
Many authors have reported a shorter treatment time when using trifocal bone transport (TFT) rather than bifocal bone transport (BFT) in the management of long segmental tibial bone defects. However, the difference in the incidence of additional procedures, the true complications, and the final results have not been investigated. A total of 86 consecutive patients with a long tibial bone defect (≥ 8 cm), who were treated between January 2008 and January 2015, were retrospectively reviewed. A total of 45 were treated by BFT and 41 by TFT. The median age of the 45 patients in the BFT group was 43 years (interquartile range (IQR) 23 to 54).Aims
Patients and Methods
The aim of this study was to evaluate the outcome of spinal instrumentation in haemodialyzed patients with native pyogenic spondylodiscitis. Spinal instrumentation in these patients can be dangerous due to rates of complications and mortality, and biofilm formation on the instrumentation. A total of 134 haemodialyzed patients aged more than 50 years who underwent surgical treatment for pyogenic spondylodiscitis were included in the study. Their mean age was 66.4 years (50 to 83); 66 were male (49.3%) and 68 were female (50.7%). They were divided into two groups according to whether spinal instrumentation was used or not. Propensity score matching was used to attenuate the potential selection bias. The outcome of treatment was compared between these two groups.Aims
Patients and Methods
Aims
Patients and Methods
The aim of this study was to evaluate the outcomes of a salvage procedure using a 95° angled blade plate for failed osteosynthesis of atypical subtrochanteric femoral fractures associated with the long-term use of bisphosphonates. These were compared with those for failed osteosynthesis of subtrochanteric fractures not associated with bisphosphonate treatment. Between October 2008 and July 2016, 14 patients with failed osteosynthesis of an atypical subtrochanteric femoral fracture were treated with a blade plate (atypical group). Their mean age was 67.8 years (60 to 74); all were female. During the same period, 21 patients with failed osteosynthesis of a typical subtrochanteric fracture underwent restabilization using a blade plate (typical group). Outcome variables included the time of union, postoperative complications, Harris Hip Score, and Sanders functional rating scale.Aims
Patients and Methods
Loosening is a well-known complication in the fixation of fractures using devices such as locking plates or unilateral fixators. It is believed that high strains in the bone at the bone-screw interface can initiate loosening, which can result in infection, and further loosening. Here, we present a new theory of loosening of implants. The time-dependent response of bone subjected to loads results in interfacial deformations in the bone which accumulate with cyclical loading and thus accentuates loosening. We used an ‘ideal’ bone-screw system, in which the screw is subjected to cyclical lateral loads and trabecular bone is modelled as non-linear viscoelastic and non-linear viscoelastic-viscoplastic material, based on recent experiments, which we conducted.Aims
Methods
The traditional transosseus flexor hallucis longus (FHL) tendon
transfer for patients with Achilles tendinopathy requires two incisions
to harvest a long tendon graft. The use of a bio-tenodesis screw
enables a short graft to be used and is less invasive, but lacks
supporting evidence about its biomechanical behaviour. We aimed,
in this study, to compare the strength of the traditional transosseus
tendon-to-tendon fixation with tendon-to-bone fixation using a tenodesis
screw, in cyclical loading and ultimate load testing. Tendon grafts were undertaken in 24 paired lower-leg specimens
and randomly assigned in two groups using fixation with a transosseus
suture (suture group) or a tenodesis screw (screw group). The biomechanical
behaviour was evaluated using cyclical and ultimate loading tests.
The Student’s Aims
Materials and Methods
Dislocation rates are reportedly lower in patients requiring
proximal femoral hemiarthroplasty than for patients undergoing hip
arthroplasty for neoplasia. Without acetabular replacement, pain
due to acetabular wear necessitating revision surgery has been described.
We aimed to determine whether wear of the native acetabulum following
hemiarthroplasty necessitates revision surgery with secondary replacement
of the acetabulum after proximal femoral replacement (PFR) for tumour
reconstruction. We reviewed 100 consecutive PFRs performed between January 2003
and January 2013 without acetabular resurfacing. The procedure was
undertaken in 74 patients with metastases, for a primary bone tumour
in 20 and for myeloma in six. There were 48 male and 52 female patients,
with a mean age of 61.4 years (19 to 85) and median follow-up of
two years (interquartile range (IQR) 0.5 to 3.7 years). In total,
52 patients presented with a pathological fracture and six presented
with failed fixation of a previously instrumented pathological fracture.Aims
Patients and Methods
The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings.Objectives
Methods
This systematic review aimed to assess the A systematic search was performed in Pubmed, followed by a two-step selection process. We included Objectives
Methods
Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis. Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14). Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process. An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking.