This retrospective study describes the long-term results of core decompression and placement of a non-vascularised bone graft in the management of avascular necrosis of the femoral head. We treated 80 hips in 65 patients, 18 by a cortical tibial autograft and 62 by a fibular allograft. The mean age of the patients was 36 years ( A total of 34 hips (44%) were revised at a mean of four years ( This is a relatively simple, extra-articular and reproducible procedure. In our view core decompression, removal of the necrotic tissue and packing of the cancellous grafts into the core track are vital parts of the procedure.
Bone allografts can store and release high levels of vancomycin. We present our results of a two-stage treatment for infected hip arthroplasty with acetabular and femoral impaction grafting using vancomycin-loaded allografts. We treated 29 patients (30 hips) by removal of the implants, meticulous debridement, parenteral antibiotic therapy and second-stage reconstruction using vancomycin-supplemented impacted bone allografts and a standard cemented Charnley femoral component. The mean follow-up was 32.4 months (24 to 60). Infection control was obtained in 29 cases (re-infection rate of 3.3%; 95% confidence interval 0.08 to 17) without evidence of progressive radiolucent lines, demarcation or graft resorption. One patient had a further infection ten months after revision caused by a different pathogen. Associated post-operative complications were one traumatic periprosthetic fracture at 14 months, a single dislocation in two hips and four displacements of the greater trochanter. Vancomycin-supplemented allografts restored bone stock and provided sound fixation with a low incidence of further infection.
Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient