Advertisement for orthosearch.org.uk
Results 381 - 400 of 676
Results per page:
Bone & Joint Research
Vol. 6, Issue 1 | Pages 31 - 42
1 Jan 2017
Kang K Koh Y Jung M Nam J Son J Lee Y Kim S Kim S

Objectives

The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions.

Methods

A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered.


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 779 - 787
1 Jun 2017
Kutzner I Bender A Dymke J Duda G von Roth P Bergmann G

Aims

Tibiofemoral alignment is important to determine the rate of progression of osteoarthritis and implant survival after total knee arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral alignment following TKA, but this has been questioned in recent years. The aim of this study was to evaluate whether varus or valgus alignment indeed leads to increased medial or lateral tibiofemoral forces during static and dynamic weight-bearing activities.

Patients and Methods

Tibiofemoral contact forces and moments were measured in nine patients with instrumented knee implants. Medial force ratios were analysed during nine daily activities, including activities with single-limb support (e.g. walking) and double-limb support (e.g. knee bend). Hip-knee-ankle angles in the frontal plane were analysed using full-leg coronal radiographs.


The Journal of Bone & Joint Surgery British Volume
Vol. 31-B, Issue 3 | Pages 444 - 450
1 Aug 1949
De V. Weir JB Bell GH Chambers JW

One of the aims of this work was to find criteria by which the quality of bone as a supporting tissue might be judged. This inevitably involves discussion and, if possible, assessment, of the relative importance of the inorganic and organic material of the bone. It is relatively easy to measure the mineral content, and for that reason it has always received more than its due share of attention. In the present experiment the composition of the ash of all bones was remarkably constant, with a Ca/P ratio of 2. Furthermore, X-ray crystallography showed that the structure of the inorganic material was the same in all cases. The great difficulty of measuring variations in the quality of the organic material which is, of course, protein in nature makes it impossible to say how much it influences bone strength. Since at least 40 per cent. of the bone is collagen, either a quantitative or a qualitative alteration might alter bone strength. X-ray crystallography revealed no qualitative differences in the collagen material of bones of the three groups; so that for the present it would seem safer to assume that alterations in the physical properties of the bones are due to variations in the relative proportions of organic and inorganic constituents (Dawson 1946, Bell et al. 1947). These experiments show that the three diets produce highly significant differences in the percentage of ash, in S. B. , and in E. It is possible that some variations in the percentage of ash are due to variations in the absolute collagen (weight of collagen in unit volume of bone substance); but the range of variation in the percentage of ash leaves no reasonable doubt that differences in percentage ash between the diet groups are due essentially to differences in absolute ash. Presumably the collagen contributes something to the strength of the bone; but the indications are that it plays a minor part and that the relative weakness and flexibility of rachitic bones is due to decrease in the absolute ash content. Within any one diet group, the relation between percentage ash and the other two variables, S. B. and E, is masked by other sources of variation such as those associated with the many measurements involved; and thus the correlation between percentage ash and S. B. , and also between percentage ash and E, is not significant. At first sight, the scatter diagrams (Figs. 5 and 6) appear to indicate a correlation between ash and S. B. , and between ash and E. Closer inspection shows, however, that the apparent trend is due largely to differences between the means of the diet groups, and that the points within any one group show no such obvious trend. Figure 7 shows that the position with regard to correlation between S. B. and E is very different. Here there is an obvious trend within each diet group; the amount of scatter is very much less. Calculation shows that, even when the differences between the means of diet groups is excluded, there is still a significant correlation between S. B. and E. The question of the correlation between the three variables is discussed more fully in the addendum to this paper. Although the "goodness" of a bone is usually judged by its breaking stress, the experimental findings recorded above suggest that it may be assessed equally well on the basis of elastic properties as shown by Young's modulus. Normal bones, group S in these experiments, were elastic up to 79 per cent. of their breaking stress (Table II): the poorer bones of groups R and N were, however, only a little inferior in this respect. In some cases there was no apparent deviation of the load-deflexion curve from a straight line until the bone was about to break. Such a curve was published in the first paper of this series (Bell, Cuthbertson and Orr 1941), but in the light of further experience this curve is scarcely typical. The terminal falling over of the curve is illustrated in Figure 4 and is much more marked in the bones of group R. While stress at the upper limit of elasticity varies over a wide range in the three groups (Table II and Fig. 4), the strain at this point is remarkably constant at about 1·5 per cent. This same percentage displacement must occur between the molecules of the bone material at the elastic limit—and it may be that, up to this amount of molecular displacement, the deformation is reversible; but that beyond it, plastic changes occur. We have no evidence as to whether the limiting displacement concerns mineral or protein constituents of the bone, or both. We have already commented on the remarkable strength of bone material (Bell et al., 1941). The breaking stress of normal rat bone is about the same as that of cast iron, and about half that of mild steel. Young's modulus, however, is only one-tenth that of cast iron and one-twentieth that of steel. Thus bone, despite its lightness (specific gravity about 2·5 as compared with 7·9 for iron), is remarkably strong and at the same time more flexible than might be expected. Presumably the biological advantage is that greater flexibility helps to absorb sudden impacts. It is unusual in metallic substances to find the elastic modulus proportional to the strength; this is more characteristic of materials like concrete and timber. Another remarkable property of bone is that it remains elastic up to three-quarters of the breaking stress. Most metals show considerable ductility before reaching their breaking point. While Young's modulus is of interest, both on its own account and as an index of the quality of the bone, its close association with breaking stress suggests that it might be used to predict the maximum load which a bone can carry safely. Since E, unlike S. B. , can be measured without damage, useful information might be gained by measuring the elasticity of living human bones


Bone & Joint Research
Vol. 7, Issue 5 | Pages 373 - 378
1 May 2018
Johnson-Lynn SE McCaskie AW Coll AP Robinson AHN

Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration.

Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy.

It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis.

Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14).

Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process.

An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking.

Cite this article: S. E. Johnson-Lynn, A. W. McCaskie, A. P. Coll, A. H. N. Robinson. Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy. Bone Joint Res 2018;7:373–378. DOI: 10.1302/2046-3758.75.BJR-2017-0334.R1.


Objectives

Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA.

Methods

We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 447 - 456
1 Jul 2018
Morgenstern M Vallejo A McNally MA Moriarty TF Ferguson JY Nijs S Metsemakers W

Objectives

As well as debridement and irrigation, soft-tissue coverage, and osseous stabilization, systemic antibiotic prophylaxis is considered the benchmark in the management of open fractures and considerably reduces the risk of subsequent fracture-related infections (FRI). The direct application of antibiotics in the surgical field (local antibiotics) has been used for decades as additional prophylaxis in open fractures, although definitive evidence confirming a beneficial effect is scarce. The purpose of the present study was to review the clinical evidence regarding the effect of prophylactic application of local antibiotics in open limb fractures.

Methods

A comprehensive literature search was performed in PubMed, Web of Science, and Embase. Cohort studies investigating the effect of additional local antibiotic prophylaxis compared with systemic prophylaxis alone in the management of open fractures were included and the data were pooled in a meta-analysis.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 132 - 136
1 Mar 2017
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B

Objectives

Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the in vitro inhibitory effects against MRSA of articulating cement spacers impregnated with either vancomycin or fosfomycin.

Methods

Vancomycin-impregnated articulating cement spacers and fosfomycin-impregnated articulating cement spacers were immersed in sterile phosphate-buffered saline (PBS) solutions and then incubated. Samples were collected for bioactivity evaluation. The aliquots were tested for MRSA inhibition with the disc diffusion method, and the inhibition zone diameters were measured. The inhibition zone differences were evaluated using the Wilcoxon Rank Sum Test.


Bone & Joint Research
Vol. 6, Issue 9 | Pages 542 - 549
1 Sep 2017
Arnold M Zhao S Ma S Giuliani F Hansen U Cobb JP Abel RL Boughton O

Objectives

Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness.

Methods

A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 443 - 449
1 Apr 2018
Kalsbeek JH van Walsum ADP Vroemen JPAM Janzing HMJ Winkelhorst JT Bertelink BP Roerdink WH

Aims

The objective of this study was to investigate bone healing after internal fixation of displaced femoral neck fractures (FNFs) with the Dynamic Locking Blade Plate (DLBP) in a young patient population treated by various orthopaedic (trauma) surgeons.

Patients and Methods

We present a multicentre prospective case series with a follow-up of one year. All patients aged ≤ 60 years with a displaced FNF treated with the DLBP between 1st August 2010 and December 2014 were included. Patients with pathological fractures, concomitant fractures of the lower limb, symptomatic arthritis, local infection or inflammation, inadequate local tissue coverage, or any mental or neuromuscular disorder were excluded. Primary outcome measure was failure in fracture healing due to nonunion, avascular necrosis, or implant failure requiring revision surgery.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 103 - 104
1 Jan 2018
Young PS Patil S Meek RMD


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 951 - 957
1 Jul 2017
Poole WEC Wilson DGG Guthrie HC Bellringer SF Freeman R Guryel E Nicol SG

Aims

Fractures of the distal femur can be challenging to manage and are on the increase in the elderly osteoporotic population. Management with casting or bracing can unacceptably limit a patient’s ability to bear weight, but historically, operative fixation has been associated with a high rate of re-operation. In this study, we describe the outcomes of fixation using modern implants within a strategy of early return to function.

Patients and Methods

All patients treated at our centre with lateral distal femoral locking plates (LDFLP) between 2009 and 2014 were identified. Fracture classification and operative information including weight-bearing status, rates of union, re-operation, failure of implants and mortality rate, were recorded.


Bone & Joint 360
Vol. 7, Issue 1 | Pages 15 - 17
1 Feb 2018


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 296 - 302
1 Mar 2018
Sprowson† AP Jensen C Parsons N Partington P Emmerson K Carluke I Asaad S Pratt R Muller S Ahmed I Reed MR

Aims

Surgical site infection (SSI) is a common complication of surgery with an incidence of about 1% in the United Kingdom. Sutures can lead to the development of a SSI, as micro-organisms can colonize the suture as it is implanted. Triclosan-coated sutures, being antimicrobical, were developed to reduce the rate of SSI. Our aim was to assess whether triclosan-coated sutures cause a reduction in SSIs following arthroplasty of the hip and knee.

Patients and Methods

This two-arm, parallel, double-blinded study involved 2546 patients undergoing elective total hip (THA) and total knee arthroplasty (TKA) at three hospitals. A total of 1323 were quasi-randomized to a standard suture group, and 1223 being quasi-randomized to the triclosan-coated suture group. The primary endpoint was the rate of SSI at 30 days postoperatively.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 205 - 212
1 Mar 2018
Lin Y Hall AC Simpson AHRW

Objectives

The purpose of this study was to create a novel ex vivo organ culture model for evaluating the effects of static and dynamic load on cartilage.

Methods

The metatarsophalangeal joints of 12 fresh cadaveric bovine feet were skinned and dissected aseptically, and cultured for up to four weeks. Dynamic movement was applied using a custom-made machine on six joints, with the others cultured under static conditions. Chondrocyte viability and matrix glycosaminoglycan (GAG) content were evaluated by the cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI), and dimethylmethylene blue (DMMB) assay, respectively.


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 134 - 142
1 Feb 2018
Hexter AT Hislop SM Blunn GW Liddle AD

Aims

Periprosthetic joint infection (PJI) is a serious complication of total hip arthroplasty (THA). Different bearing surface materials have different surface properties and it has been suggested that the choice of bearing surface may influence the risk of PJI after THA. The objective of this meta-analysis was to compare the rate of PJI between metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), and ceramic-on-ceramic (CoC) bearings.

Patients and Methods

Electronic databases (Medline, Embase, Cochrane library, Web of Science, and Cumulative Index of Nursing and Allied Health Literature) were searched for comparative randomized and observational studies that reported the incidence of PJI for different bearing surfaces. Two investigators independently reviewed studies for eligibility, evaluated risk of bias, and performed data extraction. Meta-analysis was performed using the Mantel–Haenzel method and random-effects model in accordance with methods of the Cochrane group.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives

Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments.

Materials and Methods

Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 3 - 8
1 Jan 2018
Ibrahim MS Twaij H Haddad FS

Aims

Periprosthetic joint infection (PJI) remains a challenging complication following total hip arthroplasty (THA). It is associated with high levels of morbidity, mortality and expense. Guidelines and protocols exist for the management of culture-positive patients. Managing culture-negative patients with a PJI poses a greater challenge to surgeons and the wider multidisciplinary team as clear guidance is lacking.

Patients and Methods

We aimed to compare the outcomes of treatment for 50 consecutive culture-negative and 50 consecutive culture-positive patients who underwent two-stage revision THA for chronic infection with a minimum follow-up of five years.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 531 - 537
1 Nov 2016
Burgo FJ Mengelle DE Ozols A Fernandez C Autorino CM

Objectives

Studies reporting specifically on squeaking in total hip arthroplasty have focused on cementless, and not on hybrid, fixation. We hypothesised that the cement mantle of the femur might have a damping effect on the sound transmitted through the metal stem. The objective of this study was to test the effect of cement on sound propagation along different stem designs and under different fixation conditions.

Methods

An in vitro model for sound detection, composed of a mechanical suspension structure and a sound-registering electronic assembly, was designed. A pulse of sound in the audible range was propagated along bare stems and stems implanted in cadaveric bone femurs with and without cement. Two stems of different alloy and geometry were compared.


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 119 - 124
1 Jan 2018
Broderick C Hopkins S Mack DJF Aston W Pollock R Skinner JA Warren S

Aims

Tuberculosis (TB) infection of bones and joints accounts for 6.7% of TB cases in England, and is associated with significant morbidity and disability. Public Health England reports that patients with TB experience delays in diagnosis and treatment. Our aims were to determine the demographics, presentation and investigation of patients with a TB infection of bones and joints, to help doctors assessing potential cases and to identify avoidable delays.

Patients and Methods

This was a retrospective observational study of all adults with positive TB cultures on specimens taken at a tertiary orthopaedic centre between June 2012 and May 2014. A laboratory information system search identified the patients. The demographics, clinical presentation, radiology, histopathology and key clinical dates were obtained from medical records.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives

Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA.

Methods

The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs.