Advertisement for orthosearch.org.uk
Results 21 - 40 of 62
Results per page:
Bone & Joint Research
Vol. 10, Issue 11 | Pages 714 - 722
1 Nov 2021
Qi W Feng X Zhang T Wu H Fang C Leung F

Aims

To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model.

Methods

A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1648 - 1655
1 Nov 2021
Jeong S Hwang K Oh C Kim J Sohn OJ Kim JW Cho Y Park KC

Aims

The incidence of atypical femoral fractures (AFFs) continues to increase. However, there are currently few long-term studies on the complications of AFFs and factors affecting them. Therefore, we attempted to investigate the outcomes, complications, and risk factors for complication through mid-term follow-up of more than three years.

Methods

From January 2003 to January 2016, 305 patients who underwent surgery for AFFs at six hospitals were enrolled. After exclusion, a total of 147 patients were included with a mean age of 71.6 years (48 to 89) and 146 of whom were female. We retrospectively evaluated medical records, and reviewed radiographs to investigate the fracture site, femur bowing angle, presence of delayed union or nonunion, contralateral AFFs, and peri-implant fracture. A statistical analysis was performed to identify the significance of associated factors.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 99 - 107
1 Mar 2020
Chang C Jou I Wu T Su F Tai T

Aims

Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing.

Methods

We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.


Bone & Joint Research
Vol. 10, Issue 3 | Pages 192 - 202
1 Mar 2021
Slimi F Zribi W Trigui M Amri R Gouiaa N Abid C Rebai MA Boudawara T Jebahi S Keskes H

Aims

The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model.

Methods

A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 472 - 480
1 Oct 2019
Hjorthaug GA Søreide E Nordsletten L Madsen JE Reinholt FP Niratisairak S Dimmen S

Objectives

Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model.

Methods

A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks.


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives

Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure.

Materials and Methods

A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix).


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1416 - 1422
1 Nov 2019
Rohilla R Sharma PK Wadhwani J Rohilla S Beniwal R Singh R Devgan A

Aims

In this randomized study, we aimed to compare quality of regenerate in monolateral versus circular frame fixation in 30 patients with infected nonunion of tibia.

Patients and Methods

Both groups were comparable in demographic and injury characteristics. A phantom (aluminium step wedge of increasing thickness) was designed to compare the density of regenerate on radiographs. A CT scan was performed at three and six months postoperatively to assess regenerate density. A total of 30 patients (29 male, one female; mean age 32.54 years (18 to 60)) with an infected nonunion of a tibial fracture presenting to our tertiary institute between June 2011 and April 2016 were included in the study.


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1300 - 1306
1 Oct 2019
Oliver WM Smith TJ Nicholson JA Molyneux SG White TO Clement ND Duckworth AD

Aims

The primary aim of this study was to develop a reliable, effective radiological score to assess the healing of humeral shaft fractures, the Radiographic Union Score for HUmeral fractures (RUSHU). The secondary aim was to assess whether the six-week RUSHU was predictive of nonunion at six months after the injury.

Patients and Methods

Initially, 20 patients with radiographs six weeks following a humeral shaft fracture were selected at random from a trauma database and scored by three observers, based on the Radiographic Union Scale for Tibial fractures system. After refinement of the RUSHU criteria, a second group of 60 patients with radiographs six weeks after injury, 40 with fractures that united and 20 with fractures that developed nonunion, were scored by two blinded observers.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation.

Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 139 - 147
1 Feb 2018
Takahara S Lee SY Iwakura T Oe K Fukui T Okumachi E Waki T Arakura M Sakai Y Nishida K Kuroda R Niikura T

Objectives

Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM.

Methods

Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1385 - 1391
1 Oct 2018
Qvist AH Væsel MT Jensen CM Jensen SL

Aims

Recent studies of nonoperatively treated displaced midshaft clavicular fractures have shown a high incidence of nonunion and unsatisfactory functional outcome. Some studies have shown superior functional results and higher rates of healing following operative treatment. The aim of this study was to compare the outcome in these patients after nonoperative management with those treated with fixation.

Patients and Methods

In a multicentre, parallel randomized controlled trial, 146 adult patients with an acute displaced fracture of the midthird of the clavicle were randomized to either nonoperative treatment with a sling (71, 55 men and 16 women with a mean age of 39 years, 18 to 60) or fixation with a pre-contoured plate and locking screws (75, 64 men and 11 women with a mean age of 40 years, 18 to 60). Outcome was assessed using the Disabilities of the Arm, Shoulder and Hand (DASH) Score, the Constant Score, and radiographical evidence of union. Patients were followed for one year.


Objectives

Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs.

Methods

Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 90 - 97
1 Feb 2017
Rajfer RA Kilic A Neviaser AS Schulte LM Hlaing SM Landeros J Ferrini MG Ebramzadeh E Park S

Objectives

We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days.

Materials and Methods

Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology.

Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 116 - 121
1 Apr 2016
Leow JM Clement ND Tawonsawatruk T Simpson CJ Simpson AHRW

Objectives

The radiographic union score for tibial (RUST) fractures was developed by Whelan et al to assess the healing of tibial fractures following intramedullary nailing. In the current study, the repeatability and reliability of the RUST score was evaluated in an independent centre (a) using the original description, (b) after further interpretation of the description of the score, and (c) with the immediate post-operative radiograph available for comparison.

Methods

A total of 15 radiographs of tibial shaft fractures treated by intramedullary nailing (IM) were scored by three observers using the RUST system. Following discussion on how the criteria of the RUST system should be implemented, 45 sets (i.e. AP and lateral) of radiographs of IM nailed tibial fractures were scored by five observers. Finally, these 45 sets of radiographs were rescored with the baseline post-operative radiograph available for comparison.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1134 - 1139
1 Aug 2011
Schindeler A Birke O Yu NYC Morse A Ruys A Baldock PA Little DG

Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair.

Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient (Nf1+/−) mice and control mice. Fractures were open and featured periosteal stripping. All mice received 10 μg rhBMP-2 delivered in a carboxymethylcellulose carrier around the fracture as an anabolic stimulus. Bisphosphonate-treated mice also received five doses of 0.02 mg/kg zoledronic acid given by intraperitoneal injection.

When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in Nf1+/− mice remained ununited at three weeks compared with 7% of controls (p < 0.001). Systemic post-operative administration of zoledronic acid halved the rate of ununited fractures to 37.5% (p < 0.07).

These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthoris of the tibia and NF1.


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1263 - 1268
1 Sep 2013
Savaridas T Wallace RJ Salter DM Simpson AHRW

Fracture repair occurs by two broad mechanisms: direct healing, and indirect healing with callus formation. The effects of bisphosphonates on fracture repair have been assessed only in models of indirect fracture healing.

A rodent model of rigid compression plate fixation of a standardised tibial osteotomy was used. Ten skeletally mature Sprague–Dawley rats received daily subcutaneous injections of 1 µg/kg ibandronate (IBAN) and ten control rats received saline (control). Three weeks later a tibial osteotomy was rigidly fixed with compression plating. Six weeks later the animals were killed. Fracture repair was assessed with mechanical testing, radiographs and histology.

The mean stress at failure in a four-point bending test was significantly lower in the IBAN group compared with controls (8.69 Nmm-2 (sd 7.63) vs 24.65 Nmm-2 (sd 6.15); p = 0.017). On contact radiographs of the extricated tibiae the mean bone density assessment at the osteotomy site was lower in the IBAN group than in controls (3.7 mmAl (sd 0.75) vs 4.6 mmAl (sd 0.57); p = 0.01). In addition, histological analysis revealed progression to fracture union in the controls but impaired fracture healing in the IBAN group, with predominantly cartilage-like and undifferentiated mesenchymal tissue (p = 0.007).

Bisphosphonate treatment in a therapeutic dose, as used for risk reduction in fragility fractures, had an inhibitory effect on direct fracture healing. We propose that bisphosphonate therapy not be commenced until after the fracture has united if the fracture has been rigidly fixed and is undergoing direct osteonal healing.

Cite this article: Bone Joint J 2013;95-B:1263–8.


Bone & Joint 360
Vol. 3, Issue 4 | Pages 33 - 35
1 Aug 2014

The August 2014 Research Roundup360 looks at: Antibiotic loaded ceramic of use in osteomyelitis; fibronectin implicated in cartilage degeneration; Zinc Chloride accelerates fracture healing in rats; advertisements and false claims; Net Promoter Score: substance or rhetoric?; aspirin for venous thromboembolism prophylaxis and dissection, stress and the soul.


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1683 - 1692
1 Dec 2015
Patel A James SL Davies AM Botchu R

The widespread use of MRI has revolutionised the diagnostic process for spinal disorders. A typical protocol for spinal MRI includes T1 and T2 weighted sequences in both axial and sagittal planes. While such an imaging protocol is appropriate to detect pathological processes in the vast majority of patients, a number of additional sequences and advanced techniques are emerging. The purpose of the article is to discuss both established techniques that are gaining popularity in the field of spinal imaging and to introduce some of the more novel ‘advanced’ MRI sequences with examples to highlight their potential uses.

Cite this article: Bone Joint J 2015;97-B:1683–92.


Bone & Joint 360
Vol. 2, Issue 4 | Pages 22 - 24
1 Aug 2013

The August 2013 Trauma Roundup360 looks at: reverse oblique fractures do better with a cephalomedullary device; locking screws confer no advantage in tibial plateau fractures; it’s all about the radius of curvature; radius of curvature revisited; radial head replacement in complex elbow reconstruction; stem cells in early fracture haematoma; heterotrophic ossification in forearms; and Boston in perspective.