We report the effectiveness of revision of total
elbow replacement by re-cementing. Between 1982 and 2004, 53 elbows
in 52 patients were treated with re-cementing of a total elbow replacement
into part or all of the existing cement mantle or into the debrided
host-bone interface, without the use of structural bone augmentation
or a custom prosthesis. The original implant revision was still
The technique of femoral cement-in-cement revision
is well established, but there are no previous series reporting its
use on the acetabular side at the time of revision total hip replacement.
We describe the technique and report the outcome of 60 consecutive
acetabular cement-in-cement revisions in 59 patients at a mean follow-up
of 8.5 years (5 to 12). All had a radiologically and clinically
well-fixed acetabular cement mantle at the time of revision. During
the follow-up 29 patients died, but no hips were lost to follow-up.
The two most common indications for acetabular revision were recurrent
dislocation (46, 77%) and to complement femoral revision (12, 20%). Of the 60 hips, there were two cases of aseptic loosening of
the acetabular component (3.3%) requiring re-revision. No other
hip was clinically or radiologically loose (96.7%) at the latest
follow-up. One hip was re-revised for infection, four for recurrent
dislocation and one for disarticulation of a constrained component.
At five years the Kaplan-Meier survival rate was 100% for aseptic
loosening and 92.2% (95% CI 84.8 to 99.6), with revision for any cause
as the endpoint. These results support the use of cement-in-cement revision on
the acetabular side in appropriate cases. Theoretical advantages
include preservation of bone stock, reduced operating time, reduced
risk of complications and durable fixation.
We are currently facing an epidemic of periprosthetic
fractures around the hip. They may occur either during surgery or
post-operatively. Although the acetabulum may be involved, the femur
is most commonly affected. We are being presented with new, difficult
fracture patterns around cemented and cementless implants, and we
face the challenge of an elderly population who may have grossly
deficient bone and may struggle to rehabilitate after such injuries.
The correct surgical management of these fractures is challenging.
This article will review the current choices of implants and techniques
available to deal with periprosthetic fractures of the femur. Cite this article:
In 2005, we demonstrated that the polished triple-tapered
C-stem at two years had migrated distally and rotated internally.
From that series, 33 patients have now been followed radiologically,
clinically and by radiostereometric analysis (RSA) for up to ten
years. The distal migration within the cement mantle had continued
and reached a mean of 2 mm (0.5 to 4.0) at ten years. Internal rotation,
also within the cement mantle, was a mean 3.8° (external 1.6° to
internal 6.6°) The cement mantle did not show any sign of migration
or loosening in relation to the femoral bone. There were no clinical
or radiological signs indicating that the migration or rotation
within the cement mantle had had any adverse effects for the patients. Cite this article:
Two-stage exchange remains the gold standard
for treatment of peri-prosthetic joint infection after total hip replacement
(THR). In the first stage, all components and associated cement
if present are removed, an aggressive debridement is undertaken
including a complete synovectomy, and an antibiotic-loaded cement
spacer is put in place. Patients are then treated with six weeks
of parenteral antibiotics, followed by an ‘antibiotic free period’
to help ensure the infection has been eradicated. If the clinical
evaluation and serum inflammatory markers suggest the infection
has resolved, then the second stage can be completed, which involves
removal of the cement spacer, repeat debridement, and placement
of a new THR. Cite this article:
The February 2014 Hip &
Pelvis Roundup360 looks at: length of stay; cementless metaphyseal fixation; mortality trends in over 400,000 total hip replacements; antibiotics in hip fracture surgery; blood supply to the femoral head after dislocation; resurfacing and THR in metal-on-metal replacement; diabetes and hip replacement; bone remodelling over two decades following hip replacement; and whether bisphosphonates affect acetabular fixation.
The February 2014 Research Roundup360 looks at: blood supply to the femoral head after dislocation; diabetes and hip replacement; bone remodelling over two decades following hip replacement; sham surgery as good as arthroscopic meniscectomy; distraction in knee osteoarthritis; whether joint replacement prevent cardiac events; tranexamic acid and knee replacement haemostasis; cartilage colonisation in bipolar ankle grafts; CTs and proof of fusion; atorvastatin for muscle re-innervation after sciatic nerve transection; microfracture and short-term pain in cuff repair; promising early results from L-PRF augmented cuff repairs; and fatty degeneration in a rodent model.
There is little information about the management
of peri-prosthetic fracture of the humerus after total shoulder replacement
(TSR). This is a retrospective review of 22 patients who underwent
a revision of their original shoulder replacement for peri-prosthetic
fracture of the humerus with bone loss and/or loose components.
There were 20 women and two men with a mean age of 75 years (61
to 90) and a mean follow-up 42 months (12 to 91): 16 of these had
undergone a previous revision TSR. Of the 22 patients, 12 were treated
with a long-stemmed humeral component that bypassed the fracture.
All their fractures united after a mean of 27 weeks (13 to 94).
Eight patients underwent resection of the proximal humerus with
endoprosthetic replacement to the level of the fracture. Two patients
were managed with a clam-shell prosthesis that retained the original
components. The mean Oxford shoulder score (OSS) of the original
TSRs before peri-prosthetic fracture was 33 (14 to 48). The mean
OSS after revision for fracture was 25 (9 to 31). Kaplan-Meier survival
using re-intervention for any reason as the endpoint was 91% (95%
confidence interval (CI) 68 to 98) and 60% (95% CI 30 to 80) at
one and five years, respectively. There were two revisions for dislocation of the humeral head,
one open reduction for modular humeral component dissociation, one
internal fixation for nonunion, one trimming of a prominent screw
and one re-cementation for aseptic loosening complicated by infection,
ultimately requiring excision arthroplasty. Two patients sustained
nerve palsies. Revision TSR after a peri-prosthetic humeral fracture associated
with bone loss and/or loose components is a salvage procedure that
can provide a stable platform for elbow and hand function. Good
rates of union can be achieved using a stem that bypasses the fracture.
There is a high rate of complications and function is not as good as
with the original replacement.
We evaluated all cases involving the combined use of a subtrochanteric derotational femoral shortening osteotomy with a cemented Exeter stem performed at our institution. With severe developmental dysplasia of the hip an osteotomy is often necessary to achieve shortening and derotation of the proximal femur. Reduction can be maintained with a 3.5 mm compression plate while the implant is cemented into place. Such a plate was used to stabilise the osteotomy in all cases. Intramedullary autograft helps to prevent cement interposition at the osteotomy site and promotes healing. There were 15 female patients (18 hips) with a mean age of 51 years (33 to 75) who had a Crowe IV dysplasia of the hip and were followed up for a mean of 114 months (52 to 168). None was lost to follow-up. All clinical scores were collected prospectively. The Charnley modification of the Merle D’Aubigné-Postel scores for pain, function and range of movement showed a statistically significant improvement from a mean of 2.4 (1 to 4), 2.3 (1 to 4), 3.4 (1 to 6) to 5.2 (3 to 6), 4.4 (3 to 6), 5.2 (4 to 6), respectively. Three acetabular revisions were required for aseptic loosening; one required femoral revision for access. One osteotomy failed to unite at 14 months and was revised successfully. No other case required a femoral revision. No postoperative sciatic nerve palsy was observed. Cemented Exeter femoral components perform well in the treatment of Crowe IV dysplasia with this procedure.
We describe a technique to salvage a painful hemiarthroplasty due to erosion of the acetabular cartilage in the absence of loosening of the femoral component. A press-fit metallic acetabular component which matched the femoral component was used as a metal-on-metal articulation. The procedure offered a shorter operation time with less blood loss and no risk of femoral fracture as might have occurred during conventional revision to a total hip replacement. The patient made an unremarkable recovery with a good outcome at follow-up of 15 months.
The in-cement technique for revision hip arthroplasty involves retaining the original cement-bone interface. This has been proven to be a biomechanically stronger method than recementing after complete removal of the original cement mantle. This study reviewed a series of 54 consecutive revision hip arthroplasty procedures, using the in-cement technique, between November 1999 and November 2003. Clinical and radiological follow-up included functional assessment. There were 54 procedures performed in 51 patients, whose mean age at surgery was 70.3 years (45 to 85). A total of 42 were available at a mean follow-up of 29.2 months (6 to 51). There was no radiological evidence of loosening. Functional assessments were available for 40 patients who had a mean Harris hip score of 85.2 (51.9 to 98.5), a mean Oxford hip score of 19.6 (12 to 41), a mean UCLA activity profile score of 5.9 (3 to 8) and a mean SF-36 score of 78.0 (31.6 to 100). The in-cement technique provides consistent, high functional outcomes and should be considered in appropriately selected cases.
Massive endoprostheses using a cemented intramedullary stem are widely used to allow early resumption of activity after surgery for tumours. The survival of the prosthesis varies with the anatomical site, the type of prosthesis and the mode of fixation. Revision surgery is required in many cases because of aseptic loosening. Insertion of a second cemented endoprosthesis may be difficult because of the poor quality of the remaining bone, and loosening recurs quickly. We describe a series of 14 patients with triplate fixation in difficult revision or joint-sparing tumour surgery with a minimum follow-up of four years. The triplate design incorporated well within a remodelled cortex to achieve osseomechanical integration with all patients regaining their original level of function within five months. Our preliminary results suggest that this technique may provide an easy, biomechanically friendly alternative to insertion of a further device with an intramedullary stem, which has a shorter lifespan in revision or joint-sparing tumour surgery. A short segment of bone remaining after resection of a tumour will not accept an intramedullary stem, but may be soundly fixed using this method.