There are comparatively few randomized studies evaluating knee arthroplasty prostheses, and fewer still that report longer-term functional outcomes. The aim of this study was to evaluate mid-term outcomes of an existing implant trial cohort to document changing patient function over time following total knee arthroplasty using longitudinal analytical techniques and to determine whether implant design chosen at time of surgery influenced these outcomes. A mid-term follow-up of the remaining 125 patients from a randomized cohort of total knee arthroplasty patients (initially comprising 212 recruited patients), comparing modern (Triathlon) and traditional (Kinemax) prostheses was undertaken. Functional outcomes were assessed with the Oxford Knee Score (OKS), knee range of movement, pain numerical rating scales, lower limb power output, timed functional assessment battery, and satisfaction survey. Data were linked to earlier assessment timepoints, and analyzed by repeated measures analysis of variance (ANOVA) mixed models, incorporating longitudinal change over all assessment timepoints.Aims
Methods
This study compares the PFC total knee arthroplasty (TKA) system in a prospective randomized control trial (RCT) of the mobile-bearing rotating-platform (RP) TKA against the fixed-bearing (FB) TKA. This is the largest RCT with the longest follow-up where cruciate-retaining PFC total knee arthroplasties are compared in a non-bilateral TKA study. A total of 167 patients (190 knees with 23 bilateral cases), were recruited prospectively and randomly assigned, with 91 knees receiving the RP and 99 knees receiving FB. The mean age was 65.5 years (48 to 82), the mean body mass index (BMI) was 29.7 kg/m2 (20 to 52) and 73 patients were female. The Knee Society Score (KSS), Knee Society Functional Score (KSFS), Oxford Knee Score (OKS), Western Ontario and McMaster Universities Arthritis Index (WOMAC), and 12-Item Short-Form Health Survey Physical and Mental Component Scores (SF-12 PCS, SF-12 MCS) were gathered and recorded preoperatively, at five-years’ follow-up, and at ten years’ follow-up. Additionally, Knee Injury and Osteoarthritis Outcome Scores (KOOS) were collected at five- and ten-year follow-ups. The prevalence of radiolucent lines (RL) on radiographs and implant survival were recorded at five- and ten-year follow-ups.Aims
Patients and Methods
Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM). A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest.Objectives
Methods
The aim is to assess the cost-effectiveness of patellofemoral arthroplasty (PFA) in comparison with total knee arthroplasty (TKA) for the treatment of isolated patellofemoral osteoarthritis (OA) based on prospectively collected data on health outcomes and resource use from a blinded, randomized, clinical trial. A total of 100 patients with isolated patellofemoral osteoarthritis were randomized to receive either PFA or TKA by experienced knee surgeons trained in using both implants. Patients completed patient-reported outcomes including EuroQol five-dimension questionnaire (EQ-5D) and 6-Item Short-Form Health Survey questionnaire (SF-6D) before the procedure. The scores were completed again after six weeks, three, six, and nine months, and again after one- and two-year post-surgery and yearly henceforth. Time-weighted outcome measures were constructed. Cost data were obtained from clinical registrations and patient-reported questionnaires. Incremental gain in health outcomes (quality-adjusted life-years (QALYs)) and incremental costs were compared for the two groups of patients. Net monetary benefit was calculated assuming a threshold value of €10,000, €35,000, and €50,000 per QALY and used to test the statistical uncertainty and central assumptions about outcomes and costs.Aims
Methods
The objectives of this study were to compare postoperative pain, analgesia requirements, inpatient functional rehabilitation, time to hospital discharge, and complications in patients undergoing conventional jig-based unicompartmental knee arthroplasty (UKA) This prospective cohort study included 146 patients with symptomatic medial compartment knee osteoarthritis undergoing primary UKA performed by a single surgeon. This included 73 consecutive patients undergoing conventional jig-based mobile bearing UKA, followed by 73 consecutive patients receiving robotic-arm assisted fixed bearing UKA. All surgical procedures were performed using the standard medial parapatellar approach for UKA, and all patients underwent the same postoperative rehabilitation programme. Postoperative pain scores on the numerical rating scale and opiate analgesia consumption were recorded until discharge. Time to attainment of predefined functional rehabilitation outcomes, hospital discharge, and postoperative complications were recorded by independent observers.Aims
Patients and Methods
The primary aim of this study was to determine the surgical team’s
learning curve for introducing robotic-arm assisted unicompartmental
knee arthroplasty (UKA) into routine surgical practice. The secondary
objective was to compare accuracy of implant positioning in conventional
jig-based UKA versus robotic-arm assisted UKA. This prospective single-surgeon cohort study included 60 consecutive
conventional jig-based UKAs compared with 60 consecutive robotic-arm
assisted UKAs for medial compartment knee osteoarthritis. Patients
undergoing conventional UKA and robotic-arm assisted UKA were well-matched
for baseline characteristics including a mean age of 65.5 years
(Aims
Patients and Methods
Partial knee arthroplasty (PKA), either medial
or lateral unicompartmental knee artroplasty (UKA) or patellofemoral arthroplasty
(PFA) are a good option in suitable patients and have the advantages
of reduced operative trauma, preservation of both cruciate ligaments
and bone stock, and restoration of normal kinematics within the
knee joint. However, questions remain concerning long-term survival.
The goal of this review article was to present the long-term results
of medial and lateral UKA, PFA and combined compartmental arthroplasty
for multicompartmental disease. Medium- and long-term studies suggest
reasonable outcomes at ten years with survival greater than 95% in
UKA performed for medial osteoarthritis or osteonecrosis, and similarly
for lateral Cite this article:
Current analysis of unicondylar knee replacements
(UKRs) by national registries is based on the pooled results of medial
and lateral implants. Consequently, little is known about the differential
performance of medial and lateral replacements and the influence
of each implant type within these pooled analyses. Using data from
the National Joint Registry for England and Wales (NJR) we aimed
to determine the proportion of UKRs implanted on the lateral side
of the knee, and their survival and reason for failure compared
with medial UKRs. By combining information on the side of operation
with component details held on the NJR, we were able to determine
implant laterality (medial
Advances in polyethylene (PE) in total hip arthroplasty
have led to interest and increased use of highly crosslinked PE
(HXLPE) in total knee arthroplasty (TKA). Biomechanical data suggest
improved wear characteristics for HXLPE inserts over conventional
PE in TKA. Short-term results from registry data and few clinical
trials are promising. Our aim is to present a review of the history
of HXLPEs, the use of HXLPE inserts in TKA, concerns regarding potential mechanical
complications, and a thorough review of the available biomechanical
and clinical data. Cite this article:
As many as 25% to 40% of unicompartmental knee
replacement (UKR) revisions are performed for pain, a possible cause
of which is proximal tibial strain. The aim of this study was to
examine the effect of UKR implant design and material on cortical
and cancellous proximal tibial strain in a synthetic bone model.
Composite Sawbone tibiae were implanted with cemented UKR components
of different designs, either all-polyethylene or metal-backed. The tibiae
were subsequently loaded in 500 N increments to 2500 N, unloading
between increments. Cortical surface strain was measured using a
digital image correlation technique. Cancellous damage was measured
using acoustic emission, an engineering technique that detects sonic
waves (‘hits’) produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences
between implants at 1500 N and 2500 N in the proximal 10 mm only
(p <
0.001), with relative strain shielding in metal-backed implants.
Acoustic emission showed significant differences in cancellous bone
damage between implants at all loads (p = 0.001). All-polyethylene implants
displayed 16.6 times the total number of cumulative acoustic emission
hits as controls. All-polyethylene implants also displayed more
hits than controls at all loads (p <
0.001), more than metal-backed
implants at loads ≥ 1500 N (p <
0.001), and greater acoustic
emission activity on unloading than controls (p = 0.01), reflecting
a lack of implant stiffness. All-polyethylene implants were associated
with a significant increase in damage at the microscopic level compared
with metal-backed implants, even at low loads. All-polyethylene
implants should be used with caution in patients who are likely
to impose large loads across their knee joint. Cite this article:
Unicompartmental knee arthroplasty (UKA) has
advantages over total knee arthroplasty but national joint registries report
a significantly higher revision rate for UKA. As a result, most
surgeons are highly selective, offering UKA only to a small proportion
(up to 5%) of patients requiring arthroplasty of the knee, and consequently
performing few each year. However, surgeons with large UKA practices
have the lowest rates of revision. The overall size of the practice
is often beyond the surgeon’s control, therefore case volume may
only be increased by broadening the indications for surgery, and
offering UKA to a greater proportion of patients requiring arthroplasty
of the knee. The aim of this study was to determine the optimal UKA usage
(defined as the percentage of knee arthroplasty practice comprised
by UKA) to minimise the rate of revision in a sample of 41 986 records
from the for National Joint Registry for England and Wales (NJR). UKA usage has a complex, non-linear relationship with the rate
of revision. Acceptable results are achieved with the use of 20%
or more. Optimal results are achieved with usage between 40% and
60%. Surgeons with the lowest usage (up to 5%) have the highest
rates of revision. With optimal usage, using the most commonly used
implant, five-year survival is 96% (95% confidence interval (CI)
94.9 to 96.0), compared with 90% (95% CI 88.4 to 91.6) with low
usage (5%) previously considered ideal. The rate of revision of UKA is highest with low usage, implying
the use of narrow, and perhaps inappropriate, indications. The widespread
use of broad indications, using appropriate implants, would give
patients the advantages of UKA, without the high rate of revision. Cite this article:
Between April 2004 and July 2007, we performed 241 primary total knee replacements in 204 patients using the e.motion posterior cruciate-retaining, multidirectional mobile-bearing prosthesis. Of these, 100 were carried out using an image-free navigation system, and the remaining 141 with the conventional technique. We conducted a retrospective study from the prospectively collected data of these patients to assess the early results of this new mobile-bearing design. At a mean follow-up of 49 months (32 to 71), 18 knees (7.5%) had mechanical complications of which 13 required revision. Three of these had a peri-prosthetic fracture, and were removed from the study. The indication for revision in the remaining ten was loosening of the femoral component in two, tibiofemoral dislocation in three, disassociation of the polyethylene liner in four, and a broken polyethyene liner in one. There were eight further mechanically unstable knees which presented with recurrent disassociation of the polyethylene liner. There was no significant difference in the incidence of mechanical instability between the navigation-assisted procedures (8 of 99, 8.1%) and the conventionally implanted knees (10 of 139, 7.2%). In our view, the relatively high rate of mechanical complications and revision within 30 months precludes the further use of new design of knee replacement.
This study used CT analysis to determine the rotational alignment of 39 painful and 26 painless fixed-bearing total knee replacements (TKRs) from a cohort of 740 NexGen Legacy posterior-stabilised and cruciate-retaining prostheses implanted between May 1996 and August 2003. The mean rotation of the tibial component was 4.3° of internal rotation (25.4° internal to 13.9° external rotation) in the painful group and 2.2° of external rotation (8.5° internal to 18.2° external rotation) in the painfree group (p = 0.024). In the painful group 17 tibial components were internally rotated more than 9° compared with none in the painfree group (p <
0.001). Additionally, six femoral components in the painful group were internally rotated more than 6° compared with none in the painfree group (p = 0.017). External rotational errors were not found to be associated with pain. Overall, 22 (56.4%) of the painful TKRs had internal rotational errors involving the femoral, the tibial or both components. It is estimated that at least 4.6% of all our TKRs have been implanted with significant internal rotational errors.
We compared patient-reported outcomes of the Kinemax fixed- and mobile-bearing total knee replacement in a multi-centre randomised controlled trial. Patients were randomised to the fixed- or the mobile-bearing prosthesis via a sealed envelope method after the bone cuts had been made in the operating theatre. Randomisation was stratified by centre and diagnosis. Patients were assessed pre-operatively and at eight to 12 weeks, one year and two years post-operatively. Validated questionnaires were used which included the Western Ontario MacMasters University, Short-Form 12, Mental Health Index-5, Knee Injury and Osteoarthritis Outcome Score for Knee-Related Quality of Life and Function in Sport and Recreation scales and a validated scale of satisfaction post-operatively. In total, 242 patients (250 knees) with a mean age of 68 years (40 to 80) were recruited from four NHS orthopaedic centres. Of these, 132 patients (54.5%) were women. No statistically significant differences could be identified in any of the patient-reported outcome scores between patients who received the fixed-bearing or the mobile-bearing knee up to two-years post-operatively.
We evaluated the rates of survival and cause
of revision of seven different brands of cemented primary total
knee replacement (TKR) in the Norwegian Arthroplasty Register during
the years 1994 to 2009. Revision for any cause, including resurfacing
of the patella, was the primary endpoint. Specific causes of revision
were secondary outcomes. Three posterior cruciate-retaining (PCR) fixed modular-bearing
TKRs, two fixed non-modular bearing PCR TKRs and two mobile-bearing
posterior cruciate-sacrificing TKRs were investigated in a total
of 17 782 primary TKRs. The median follow-up for the implants ranged
from 1.8 to 6.9 years. Kaplan-Meier 10-year survival ranged from
89.5% to 95.3%. Cox’s relative risk (RR) was calculated relative
to the fixed modular-bearing Profix knee (the most frequently used
TKR in Norway), and ranged from 1.1 to 2.6. The risk of revision
for aseptic tibial loosening was higher in the mobile-bearing LCS
Classic (RR 6.8 (95% confidence interval (CI) 3.8 to 12.1)), the
LCS Complete (RR 7.7 (95% CI 4.1 to 14.4)), the fixed modular-bearing
Duracon (RR 4.5 (95% CI 1.8 to 11.1)) and the fixed non-modular
bearing AGC Universal TKR (RR 2.5 (95% CI 1.3 to 5.1)), compared
with the Profix. These implants (except AGC Universal) also had
an increased risk of revision for femoral loosening (RR 2.3
(95% CI 1.1 to 4.8), RR 3.7 (95% CI 1.6 to 8.9), and RR 3.4 (95%
CI 1.1 to 11.0), respectively). These results suggest that aseptic
loosening is related to design in TKR. Cite this article:
Medium-term survivorship of the Oxford phase
3 unicompartmental knee replacement (UKR) has not yet been established
in an Asian population. We prospectively evaluated the outcome of
400 phase 3 Oxford UKRs in 320 Korean patients with a mean age at
the time of operation of 69 years (48 to 82). The mean follow-up
was 5.2 years (1 to 10). Clinical and radiological assessment was
carried out pre- and post-operatively. At five years, the mean Knee
Society knee and functional scores had increased significantly from
56.2 (30 to 91) pre-operatively to 87.2 (59 to 98) (p = 0.034) and
from 59.2 (30 to 93) to 88.3 (50 to 100) (p = 0.021), respectively.
The Oxford knee score increased from a mean of 25.8 (12 to 39) pre-operatively
to 39.8 (25 to 58) at five years (p = 0.038). The ten-year survival
rate was 94% (95% confidence interval 90.1 to 98.0). A total of
14 UKRs (3.5%) required revision. The most common reason for revision
was dislocation of the bearing in 12 (3%). Conversion to a total
knee replacement was required in two patients who developed osteoarthritis
of the lateral compartment. This is the largest published series of UKR in Korean patients.
It shows that the mid-term results after a minimally invasive Oxford
phase 3 UKR can yield satisfactory clinical and functional results
in this group of patients.
The lateral compartment is predominantly affected
in approximately 10% of patients with osteoarthritis of the knee. The
anatomy, kinematics and loading during movement differ considerably
between medial and lateral compartments of the knee. This in the
main explains the relative protection of the lateral compartment
compared with the medial compartment in the development of osteoarthritis.
The aetiology of lateral compartment osteoarthritis can be idiopathic,
usually affecting the femur, or secondary to trauma commonly affecting
the tibia. Surgical management of lateral compartment osteoarthritis
can include osteotomy, unicompartmental knee replacement and total
knee replacement. This review discusses the biomechanics, pathogenesis
and development of lateral compartment osteoarthritis and its management. Cite this article: