The aim of this independent multicentre study was to assess the
mid-term results of mobile bearing unicondylar knee arthroplasty
(UKA) for isolated lateral osteoarthritis of the knee joint. We retrospectively evaluated 363 consecutive, lateral UKAs (346
patients) performed using the Oxford domed lateral prosthesis undertaken
in three high-volume knee arthroplasty centres between 2006 and
2014. Mean age of the patients at surgery was 65 years (36 to 88)
with a mean final follow-up of 37 months (12 to 93)Aims
Patients and Methods
Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs.Objectives
Methods
Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions.Objectives
Methods
The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions. A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered.Objectives
Methods
Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions.Objectives
Materials and Methods
Unicompartmental knee arthroplasty (UKA) has been successfully
performed in the United States healthcare system on outpatients.
Despite differences in healthcare structure and financial environment,
we hypothesised that it would be feasible to replicate this success
and perform UKA with safe day of surgery discharge within the NHS,
in the United Kingdom. This has not been reported in any other United
Kingdom centres. We report our experience of implementing a pathway to allow safe
day of surgery discharge following UKA. Data were prospectively
collected on 72 patients who underwent UKA as a day case between
December 2011 and September 2015. Aims
Patients and Methods
The aim of this study was to report the outcome of the non-operative
treatment of high-grade posterior cruciate ligament (PCL) injuries,
particularly Hughston grade III injuries, which have not previously
been described. This was a prospective study involving 46 consecutive patients
who were athletes with MRI-confirmed isolated PCL injuries presenting
within four weeks of injury. All had Hughston grade II (25 athletes)
or III (21 athletes) injuries. Our non-operative treatment regimen
involved initial bracing, followed by an individualised rehabilitation
programme determined by the symptoms and physical signs. The patients
were reviewed until they had returned to sports-specific training,
and were reviewed again at a mean of 5.2 years (3 to 9).Aims
Patients and Methods
The purpose of this study was to report the experience of dynamic
intraligamentary stabilisation (DIS) using the Ligamys device for
the treatment of acute ruptures of the anterior cruciate ligament
(ACL). Between March 2011 and April 2012, 50 patients (34 men and 16
women) with an acute rupture of the ACL underwent primary repair
using this device. The mean age of the patients was 30 years (18
to 50). Patients were evaluated for laxity, stability, range of
movement (ROM), Tegner, Lysholm, International Knee Documentation Committee
(IKDC) and visual analogue scale (VAS) scores over a follow-up period
of two years.Aims
Patients and Methods
Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).Objectives
Methods
Our aim was to perform a meta-analysis of the outcomes of revision
anterior cruciate ligament (ACL) reconstruction, comparing the use
of different types of graft. A search was performed of Medline and Pubmed using the terms
“Anterior Cruciate Ligament” and “ACL” combined with “revision”,
“re-operation” and “failure”. Only studies that reported the outcome
at a minimum follow-up of two years were included. Two authors reviewed
the papers, and outcomes were subdivided into autograft and allograft. Autograft
was subdivided into hamstring (HS) and bone-patellar tendon-bone
(BPTB). Subjective and objective outcome measures were analysed
and odds ratios with confidence intervals were calculated.Aims
Materials and Methods
Unicompartmental knee arthroplasty (UKA) is a potential treatment
for isolated bone on bone osteoarthritis when limited to a single
compartment. The risk for revision of UKA is three times higher
than for total knee arthroplasty (TKA). The aim of this review was
to discuss the different revision options after UKA failure. A search was performed for English language articles published
between 2006 and 2016. After reviewing titles and abstracts, 105
papers were selected for further analysis. Of these, 39 papers were
deemed to contain clinically relevant data to be included in this review.Objectives
Materials and Methods
Knee joint distraction (KJD) is a relatively new, knee-joint
preserving procedure with the goal of delaying total knee arthroplasty
(TKA) in young and middle-aged patients. We present a randomised
controlled trial comparing the two. The 60 patients ≤ 65 years with end-stage knee osteoarthritis
were randomised to either KJD (n = 20) or TKA (n = 40). Outcomes
were assessed at baseline, three, six, nine, and 12 months. In the
KJD group, the joint space width (JSW) was radiologically assessed,
representing a surrogate marker of cartilage thickness.Aims
Patients and Methods
Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.Objectives
Materials and Methods
To compare the gait of unicompartmental knee arthroplasty (UKA)
and total knee arthroplasty (TKA) patients with healthy controls,
using a machine-learning approach. 145 participants (121 healthy controls, 12 patients with cruciate-retaining
TKA, and 12 with mobile-bearing medial UKA) were recruited. The
TKA and UKA patients were a minimum of 12 months post-operative,
and matched for pattern and severity of arthrosis, age, and body
mass index. Participants walked on an instrumented treadmill until their
maximum walking speed was reached. Temporospatial gait parameters,
and vertical ground reaction force data, were captured at each speed.
Oxford knee scores (OKS) were also collected. An ensemble of trees
algorithm was used to analyse the data: 27 gait variables were used
to train classification trees for each speed, with a binary output
prediction of whether these variables were derived from a UKA or
TKA patient. Healthy control gait data was then tested by the decision
trees at each speed and a final classification (UKA or TKA) reached
for each subject in a majority voting manner over all gait cycles
and speeds. Top walking speed was also recorded.Aims
Patients and Methods