Advertisement for orthosearch.org.uk
Results 241 - 251 of 251
Results per page:
Bone & Joint 360
Vol. 2, Issue 4 | Pages 2 - 5
1 Aug 2013
Cakic JN

Arthroscopy has become a routine surgical procedure, used as a diagnostic and therapeutic tool for the treatment of joint problems. This article discusses its origins and looks at how it is currently used.


Bone & Joint 360
Vol. 1, Issue 5 | Pages 34 - 35
1 Oct 2012
Cobb JP


Bone & Joint 360
Vol. 2, Issue 2 | Pages 28 - 30
1 Apr 2013

The April 2013 Oncology Roundup360 looks at: the margin for error; new money for old risks; hindquarter amputation; custom tumour jigs; preserving the tibial epiphysis; how long is long enough?; genomics and radiation-induced bone tumours; and India ink.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 301 - 304
1 Mar 2013
Brennan SA Devitt BM O’Neill CJ Nicholson P

Focal femoral inlay resurfacing has been developed for the treatment of full-thickness chondral defects of the knee. This technique involves implanting a defect-sized metallic or ceramic cap that is anchored to the subchondral bone through a screw or pin. The use of these experimental caps has been advocated in middle-aged patients who have failed non-operative methods or biological repair techniques and are deemed unsuitable for conventional arthroplasty because of their age. This paper outlines the implant design, surgical technique and biomechanical principles underlying their use. Outcomes following implantation in both animal and human studies are also reviewed.

Cite this article: Bone Joint J 2013;95-B:301–4.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 624 - 629
1 May 2012
Audenaert E Smet B Pattyn C Khanduja V

The aim of this study was to determine the accuracy of registration and the precision of the resection volume in navigated hip arthroscopy for cam-type femoroacetabular impingement, using imageless and image-based registration. A virtual cam lesion was defined in 12 paired cadaver hips and randomly assigned to either imageless or image-based (three-dimensional (3D) fluoroscopy) navigated arthroscopic head–neck osteochondroplasty. The accuracy of patient–image registration for both protocols was evaluated and post-operative imaging was performed to evaluate the accuracy of the surgical resection. We found that the estimated accuracy of imageless registration in the arthroscopic setting was poor, with a mean error of 5.6 mm (standard deviation (sd) 4.08; 95% confidence interval (CI) 4.14 to 7.19). Because of the significant mismatch between the actual position of the probe during surgery and the position of that probe as displayed on the navigation platform screen, navigated femoral osteochondroplasty was physically impossible. The estimated accuracy of image-based registration by means of 3D fluoroscopy had a mean error of 0.8 mm (sd 0.51; 95% CI 0.56 to 0.94). In terms of the volume of bony resection, a mean of 17% (sd 11; -6% to 28%) more bone was resected than with the virtual plan (p = 0.02). The resection was a mean of 1 mm deeper (sd 0.7; -0.3 to 1.6) larger than on the original virtual plan (p = 0.02).

In conclusion, given the limited femoral surface that can be reached and digitised during arthroscopy of the hip, imageless registration is inaccurate and does not allow for reliable surgical navigation. However, image-based registration does acceptably allow for guided femoral osteochondroplasty in the arthroscopic management of femoroacetabular impingement.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 16 - 22
1 Jan 2012
Popovic D King GJW

In light of the growing number of elderly osteopenic patients with distal humeral fractures, we discuss the history of their management and current trends. Under most circumstances operative fixation and early mobilisation is the treatment of choice, as it gives the best results. The relative indications for and results of total elbow replacement versus internal fixation are discussed.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 830 - 834
1 Jun 2009
Pinskerova V Samuelson KM Stammers J Maruthainar K Sosna A Freeman MAR

There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120° and 160° of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee.

In the range of flexion from 120° to 160° the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160° the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160° of flexion.

Neither the events between 120° and 160° nor the anatomy at 160° could result from a continuation of the kinematics up to 120°. Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0° to 160°.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 995 - 999
1 Aug 2008
Longo UG King JB Denaro V Maffulli N

There is a trend towards the use of double-bundle techniques for the reconstruction of the anterior cruciate ligament. This has not been substantiated scientifically. The functional outcome of these techniques is equivalent to that of single-bundle methods. The main advantage of a double-bundle rather than a single-bundle reconstruction should be a better rotational stability, but the validity and accuracy of systems for the measurement of rotational stability have not been confirmed.

Despite the enthusiasm of surgeons for the double-bundle technique, reconstruction with a single-bundle should remain the standard method for managing deficiency of the anterior cruciate ligament until strong evidence in favour of the use of the double-bundle method is available.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 766 - 771
1 Jun 2007
Shannon FJ Cronin JJ Cleary MS Eustace SJ O’Byrne JM

Our aims were to map the tibial footprint of the posterior cruciate ligament (PCL) using MRI in patients undergoing PCL-preserving total knee replacement, and to document the disruption of this footprint as a result of the tibial cut. In 26 consecutive patients plain radiography and MRI of the knee were performed pre-operatively, and plain radiography post-operatively.

The lower margin of the PCL footprint was located a mean of 1 mm (−10 to 8) above the upper aspect of the fibular head. The mean surface area was 83 mm2 (49 to 142). One-third of patients (8 of 22) had tibial cuts made below the lowest aspect of the PCL footprint (complete removal) and one-third (9 of 22) had cuts extending into the footprint (partial removal). The remaining patients (5 of 22) had footprints unaffected by the cuts, keeping them intact.

Our study highlights the wide variation in the location of the tibial PCL footprint when referenced against the fibula. Proximal tibial cuts using conventional jigs resulted in the removal of a significant portion, if not all of the PCL footprint in most of the patients in our study. Our findings suggest that when performing PCL-retaining total knee replacement the tibial attachment of the PCL is often removed.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1016 - 1021
1 Aug 2006
Delport HP Banks SA De Schepper J Bellemans J

Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the in vivo kinematics of this new group of implants. We investigated 31 patients who had undergone a total knee replacement with a similar prosthetic design but with three different options: fixed-bearing posterior cruciate ligament-retaining, fixed-bearing posterior-stabilised and mobile-bearing posterior-stabilised. To do this we used a three-dimensional to two-dimensional model registration technique. Both the fixed- and mobile-bearing posterior-stabilised configurations used the same femoral component. We found that fixed-bearing posterior stabilised and mobile-bearing posterior-stabilised knee replacements demonstrated similar kinematic patterns, with consistent femoral roll-back during flexion. Mobile-bearing posterior-stabilised knee replacements demonstrated greater and more natural internal rotation of the tibia during flexion than fixed-bearing posterior-stabilised designs. Such rotation occurred at the interface between the insert and tibial tray for mobile-bearing posterior-stabilised designs. However, for fixed-bearing posterior-stabilised designs, rotation occurred at the proximal surface of the bearing. Posterior cruciate ligament-retaining knee replacements demonstrated paradoxical sliding forward of the femur.

We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 646 - 655
1 May 2005
Victor J Banks S Bellemans J

We performed a prospective, randomised trial of 44 patients to compare the functional outcomes of a posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-substituting total knee arthroplasty, and to gain a better understanding of the in vivo kinematic behaviour of both devices.

At follow-up at five years, no statistically significant differences were found in the clinical outcome measurements for either design. The prevalence of radiolucent lines and the survivorship were the same. In a subgroup of 15 knees, additional image-intensifier analysis in the horizontal and sagittal planes was performed during step-up and lunge activity. Our analysis revealed striking differences. Lunge activity showed a mean posterior displacement of both medial and lateral tibiofemoral contact areas (roll-back) which was greater and more consistent in the cruciate-substituting than in the cruciate-retaining group (medial p < 0.0001, lateral p = 0.011). The amount of posterior displacement could predict the maximum flexion which could be achieved (p = 0.018). Forward displacement of the tibiofemoral contact area in flexion during stair activity was seen more in the cruciate-retaining than in the cruciate-substituting group. This was attributed mainly to insufficiency of the posterior cruciate ligament and partially to that of the anterior cruciate ligament. We concluded that, despite similar clinical outcomes, there are significant kinematic differences between cruciate-retaining and cruciate-substituting arthroplasties.