The goals of this study were: 1) to determine if high-fat diet
(HFD) feeding in female mice would negatively impact biomechanical
and histologic consequences on the Achilles tendon and quadriceps
muscle; and 2) to investigate whether exercise and branched-chain
amino acid (BCAA) supplementation would affect these parameters
or attenuate any negative consequences resulting from HFD consumption. We examined the effects of 16 weeks of 60% HFD feeding, voluntary
exercise (free choice wheel running) and BCAA administration in
female C57BL/6 mice. The Achilles tendons and quadriceps muscles
were removed at the end of the experiment and assessed histologically
and biomechanically.Objectives
Methods
We analysed whether a high body mass index (BMI)
had a deleterious effect on outcome following autologous chondrocyte
implantation (ACI) or matrix-carried autologous chondrocyte implantation
(MACI) for the treatment of full-thickness chondral defects of the
knee from a subset of patients enrolled in the ACI vs MACI trial
at The Royal National Orthopaedic Hospital. The mean Modified Cincinnati scores (MCS) were significantly
higher (p <
0.001) post-operatively in patients who had an ideal
body weight (n = 53; 20 to 24.9 kg/m2) than in overweight
(n = 63; 25 to 30 kg/m2) and obese patients (n = 22;
>
30 kg/m2). At a follow-up of two years, obese patients
demonstrated no sustained improvement in the MCS. Patients with
an ideal weight experienced significant improvements as early as
six months after surgery (p = 0.007). In total, 82% of patients
(31 of 38) in the ideal group had a good or excellent result, compared
with 49% (22 of 45) of the overweight and 5.5% (one of 18) in the
obese group (p <
0.001). There was a significant negative relationship between
BMI and the MCS 24 months after surgery (r = -0.4, p = 0.001). This study demonstrates that obese patients have worse knee function
before surgery and experience no sustained benefit from ACI or MACI
at two years after surgery. There was a correlation between increasing
BMI and a lower MCS according to a linear regression analysis. On
the basis of our findings patient selection can be more appropriately
targeted.
The incidence of acute and chronic conditions
of the tendo Achillis appear to be increasing. Causation is multifactorial
but the role of inherited genetic elements and the influence of
environmental factors altering gene expression are increasingly
being recognised. Certain individuals’ tendons carry specific variations
of genetic sequence that may make them more susceptible to injury.
Alterations in the structure or relative amounts of the components
of tendon and fine control of activity within the extracellular
matrix affect the response of the tendon to loading with failure
in certain cases. This review summarises present knowledge of the influence of
genetic patterns on the pathology of the tendo Achillis, with a
focus on the possible biological mechanisms by which genetic factors
are involved in the aetiology of tendon pathology. Finally, we assess
potential future developments with both the opportunities and risks
that they may carry. Cite this article:
This study aimed to investigate time-dependent gene expression
of injured human anterior cruciate ligament (ACL), and to evaluate
the histological changes of the ACL remnant in terms of cellular
characterisation. Injured human ACL tissues were harvested from 105 patients undergoing
primary ACL reconstruction and divided into four phases based on
the period from injury to surgery. Phase I was <
three weeks,
phase II was three to eight weeks, phase III was eight to 20 weeks,
and phase IV was ≥ 21 weeks. Gene expressions of these tissues were
analysed in each phase by quantitative real-time polymerase chain
reaction using selected markers (collagen types 1 and 3, biglycan,
decorin, α-smooth muscle actin, IL-6, TGF-β1, MMP-1, MMP-2 and TIMP-1).
Immunohistochemical staining was also performed using primary antibodies
against CD68, CD55, Stat3 and phosphorylated-Stat3 (P-Stat3). Objectives
Methods
The need for bone tissue supplementation exists in a wide range
of clinical conditions involving surgical reconstruction in limbs,
the spine and skull. The bone supplementation materials currently
used include autografts, allografts and inorganic matrix components;
but these pose potentially serious side-effects. In particular the
availability of the autografts is usually limited and their harvesting
causes surgical morbidity. Therefore for the purpose of supplementation
of autologous bone graft, we have developed a method for autologous
extracorporeal bone generation. Human osteoblast-like cells were seeded on porous granules of
tricalcium phosphate and incubated in osteogenic media while exposed
to mechanical stimulation by vibration in the infrasonic range of
frequencies. The generated tissue was examined microscopically following
haematoxylin eosin, trichrome and immunohistochemical staining.Objectives
Methods
We examined whether enamel matrix derivative
(EMD) could improve healing of the tendon–bone interface following
reconstruction of the anterior cruciate ligament (ACL) using a hamstring
tendon in a rat model. ACL reconstruction was performed in both
knees of 30 Sprague-Dawley rats using the flexor digitorum tendon.
The effect of commercially available EMD (EMDOGAIN), a preparation
of matrix proteins from developing porcine teeth, was evaluated.
In the left knee joint the space around the tendon–bone interface
was filled with 40 µl of EMD mixed with propylene glycol alginate
(PGA). In the right knee joint PGA alone was used. The ligament
reconstructions were evaluated histologically and biomechanically
at four, eight and 12 weeks (n = 5 at each time point). At eight weeks,
EMD had induced a significant increase in collagen fibres connecting
to bone at the tendon–bone interface (p = 0.047), whereas the control
group had few fibres and the tendon–bone interface was composed
of cellular and vascular fibrous tissues. At both eight and 12 weeks,
the mean load to failure in the treated specimens was higher than
in the controls (p = 0.009). EMD improved histological tendon–bone
healing at eight weeks and biomechanical healing at both eight and
12 weeks. EMD might therefore have a human application to enhance
tendon–bone repair in ACL reconstruction.
Advanced MRI cartilage imaging such as T1-rho
(T1ρ) for the diagnosis of early cartilage degradation prior to morpholgic
radiological changes may provide prognostic information in the management
of joint disease. This study aimed first to determine the normal
T1ρ profile of cartilage within the hip, and secondly to identify
any differences in T1ρ profile between the normal and symptomatic
femoroacetabular impingement (FAI) hip. Ten patients with cam-type
FAI (seven male and three female, mean age 35.9 years (28 to 48))
and ten control patients (four male and six female, mean age 30.6
years (22 to 35)) underwent 1.5T T1ρ MRI of a single hip. Mean T1ρ relaxation
times for full thickness and each of the three equal cartilage thickness
layers were calculated and compared between the groups. The mean
T1ρ relaxation times for full cartilage thickness of control and
FAI hips were similar (37.17 ms ( These results suggest that 1.5T T1ρ MRI can detect acetabular
hyaline cartilage changes in patients with FAI.
The success of long-term transcutaneous implants
depends on dermal attachment to prevent downgrowth of the epithelium
and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn)
have independently been shown to regulate fibroblast activity and
improve attachment. In an attempt to enhance this phenomenon we
adsorbed Fn onto HA-coated substrates. Our study was designed to
test the hypothesis that adsorption of Fn onto HA produces a surface
that will increase the attachment of dermal fibroblasts better than
HA alone or titanium alloy controls. Iodinated Fn was used to investigate the durability of the protein
coating and a bioassay using human dermal fibroblasts was performed
to assess the effects of the coating on cell attachment. Cell attachment
data were compared with those for HA alone and titanium alloy controls
at one, four and 24 hours. Protein attachment peaked within one
hour of incubation and the maximum binding efficiency was achieved
with an initial droplet of 1000 ng. We showed that after 24 hours
one-fifth of the initial Fn coating remained on the substrates,
and this resulted in a significant, three-, four-, and sevenfold
increase in dermal fibroblast attachment strength compared to uncoated controls
at one, four and 24 hours, respectively.
We attempted to characterise the biological quality
and regenerative potential of chondrocytes in osteochondritis dissecans
(OCD). Dissected fragments from ten patients with OCD of the knee
(mean age 27.8 years (16 to 49)) were harvested at arthroscopy.
A sample of cartilage from the intercondylar notch was taken from
the same joint and from the notch of ten patients with a traumatic
cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes
were extracted and subsequently cultured. Collagen types 1, 2, and
10 mRNA were quantified by polymerase chain reaction. Compared with
the notch chondrocytes, cells from the dissecate expressed similar
levels of collagen types 1 and 2 mRNA. The level of collagen type
10 message was 50 times lower after cell culture, indicating a loss
of hypertrophic cells or genes. The high viability, retained capacity
to differentiate and metabolic activity of the extracted cells suggests
preservation of the intrinsic repair capability of these dissecates.
Molecular analysis indicated a phenotypic modulation of the expanded
dissecate chondrocytes towards a normal phenotype. Our findings
suggest that cartilage taken from the dissecate can be reasonably
used as a cell source for chondrocyte implantation procedures.
We conducted a case-control study to examine
the merit of silver-coated tumour prostheses. We reviewed 85 patients
with Agluna-treated (silver-coated) tumour implants treated between
2006 and 2011 and matched them with 85 control patients treated
between 2001 and 2011 with identical, but uncoated, tumour prostheses. In all, 106 men and 64 women with a mean age of 42.2 years (18.4
to 90.4) were included in the study. There were 50 primary reconstructions
(29.4%); 79 one-stage revisions (46.5%) and 41 two-stage revisions
for infection (24.1%). The overall post-operative infection rate of the silver-coated
group was 11.8% compared with 22.4% for the control group (p = 0.033,
chi-square test). A total of seven of the ten infected prostheses
in the silver-coated group were treated successfully with debridement,
antibiotics, and implant retention compared with only six of the
19 patients (31.6%) in the control group (p = 0.048, chi-square
test). Three patients in the silver-coated group (3.5%) and 13 controls
(15.3%) had chronic periprosthetic infection (p = 0.009, chi-square
test). The overall success rates in controlling infection by two-stage
revision in the silver-coated group was 85% (17/20) compared with
57.1% (12/21) in the control group (p = 0.05, chi-square test).
The Agluna-treated endoprostheses were associated with a lower rate
of early periprosthetic infection. These silver-treated implants
were particularly useful in two-stage revisions for infection and
in those patients with incidental positive cultures at the time
of implantation of the prosthesis. Debridement with antibiotic treatment and retention of the implant
appeared to be more successful with silver-coated implants. Cite this article:
Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting. There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.
This study reports the application of a novel method for quantitatively determining differences in the mechanical properties of healthy and torn rotator cuff tissues. In order to overcome problems of stress risers at the grip-tendon interface that can obscure mechanical measurements of small tendons, we conducted our investigation using dynamic shear analysis. Rotator cuff tendon specimens were obtained from 100 patients during shoulder surgery. They included 82 differently sized tears and 18 matched controls. We subjected biopsy samples of 3 mm in diameter to oscillatory deformation under compression using dynamic shear analysis. The storage modulus (G’) was calculated as an indicator of mechanical integrity. Normal tendons had a significantly higher storage modulus than torn tendons, indicating that torn tendons are mechanically weaker than normal tendons (p = 0.003). Normal tendons had a significantly higher mean shear modulus than tendons with massive tears (p <
0.01). Dynamic shear analysis allows the determination of shear mechanical properties of small tissue specimens obtained intra-operatively that could not be studied by conventional methods of tensile testing. These methods could be employed to investigate other musculoskeletal tissues. This pilot study provides some insight into mechanisms that might contribute to the failure of repair surgery, and with future application could help direct the most appropriate treatment for specific rotator cuff tears.
We reviewed 59 bone graft substitutes marketed
by 17 companies currently available for implantation in the United Kingdom,
with the aim of assessing the peer-reviewed literature to facilitate
informed decision-making regarding their use in clinical practice.
After critical analysis of the literature, only 22 products (37%)
had any clinical data. Norian SRS (Synthes), Vitoss (Orthovita),
Cortoss (Orthovita) and Alpha-BSM (Etex) had Level I evidence. We question
the need for so many different products, especially with limited
published clinical evidence for their efficacy, and conclude that
there is a considerable need for further prospective randomised
trials to facilitate informed decision-making with regard to the
use of current and future bone graft substitutes in clinical practice. Cite this article:
The aim of this study was to investigate genetic influences on the development and progression of tears of the rotator cuff. From a group of siblings of patients with a tear of the rotator cuff and of controls studied five years earlier, we determined the prevalence of tears of the rotator cuff with and without associated symptoms using ultrasound and the Oxford Shoulder Score. In the five years since the previous assessment, three of 62 (4.8%) of the sibling group and one of the 68 (1.5%) controls had undergone shoulder surgery. These subjects were excluded from the follow-up. Full-thickness tears were found in 39 of 62 (62.9%) siblings and in 15 of 68 (22.1%) controls (p = 0.0001). The relative risk of full-thickness tears in siblings as opposed to controls was 2.85 (95% confidence interval (CI) 1.75 to 4.64), compared to 2.42 (95% CI 1.77 to 3.31) five years earlier. Full-thickness tears associated with pain were found in 30 of 39 (76.9%) tears in the siblings and in eight of 15 (53.3%) tears in the controls (p = 0.045). The relative risk of pain associated with a full-thickness tear in the siblings as opposed to the controls was 1.44 (95% CI 2.04 to 8.28) (p = 0.045). In the siblings group ten of 62 (16.1%) had progressed in terms of tear size or development compared to one of 68 (1.5%) in the control group which had increased in size. Full-thickness rotator cuff tears in siblings are significantly more likely to progress over a period of five years than in a control population. This implies that genetic factors have a role, not only in the development but also in the progression of full-thickness tears of the rotator cuff.
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases.
We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.
Fibrin glue, also known as fibrin sealant, is now established as a haemostatic agent in surgery, but its role in orthopaedic surgery is neither well known nor clearly defined. Although it was originally used over 100 years ago, concerns about transmission of disease meant that it fell from favour. It is also available as a slow-release drug delivery system and as a substrate for cellular growth and tissue engineering. Consequently, it has the potential to be used in a number of ways in orthopaedic surgery. The purpose of this review is to address its use in surgery of the knee in which it appears to offer great promise.
The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff. We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis). The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears. These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment.