An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.
We performed a retrospective review of all patients
admitted to two large University Hospitals in the United Kingdom
over a 24-month period from January 2008 to January 2010 to identify
the incidence of atypical subtrochanteric and femoral shaft fractures
and their relationship to bisphosphonate treatment. Of the 3515 patients
with a fracture of the proximal femur, 156 fractures were in the
subtrochanteric region. There were 251 femoral shaft fractures.
The atypical fracture pattern was seen in 27 patients (7%) with
29 femoral shaft or subtrochanteric fractures. A total of 22 patients
with 24 atypical fractures were receiving bisphosphonate treatment at
the time of fracture. Prodromal pain was present in nine patients
(11 fractures); 11 (50%) of the patients on bisphosphonates suffered
12 spontaneous fractures, and healing of these fractures was delayed
in a number of patients. This large dual-centre review has established
the incidence of atypical femoral fractures at 7% of the study population,
81% of whom had been on bisphosphonate treatment for a mean of 4.6
years (0.04 to 12.1). This study does not advocate any change in the use of bisphosphonates
to prevent fragility fractures but attempts to raise awareness of
this possible problem so symptomatic patients will be appropriately
investigated. However, more work is required to identify the true
extent of this new and possibly increasing problem.
In this prospective study a total of 80 consecutive
Chinese patients with Crowe type I or II developmental dysplasia of
the hip were randomly assigned for hip resurfacing arthroplasty
(HRA) or total hip replacement (THR). Three patients assigned to HRA were converted to THR, and three
HRA patients and two THR patients were lost to follow-up. This left
a total of 34 patients (37 hips) who underwent HRA and 38 (39 hips)
who underwent THR. The mean follow-up was 59.4 months (52 to 70)
in the HRA group and 60.6 months (50 to 72) in the THR group. There was
no failure of the prosthesis in either group. Flexion of the hip
was significantly better after HRA, but there was no difference
in the mean post-operative Harris hip scores between the groups.
The mean size of the acetabular component in the HRA group was significantly
larger than in the THR group (49.5 mm vs 46.1 mm, p = 0.001). There was
no difference in the mean abduction angle of the acetabular component
between the two groups. Although the patients in this series had risk factors for failure
after HRA, such as low body weight, small femoral heads and dysplasia,
the clinical results of resurfacing in those with Crowe type I or
II hip dysplasia were satisfactory. Patients in the HRA group had
a better range of movement, although neck-cup impingement was observed.
However, more acetabular bone was sacrificed in HRA patients, and
it is unclear whether this will have an adverse effect in the long
term.
The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.
In an interdisciplinary project involving electronic
engineers and clinicians, a telemetric system was developed to measure
the bending load in a titanium internal femoral fixator. As this
was a new device, the main question posed was: what clinically relevant
information could be drawn from its application? As a first clinical
investigation, 27 patients (24 men, three women) with a mean age
of 38.4 years (19 to 66) with femoral nonunions were treated using the
system. The mean duration of the nonunion was 15.4 months (5 to
69). The elasticity of the plate-callus system was measured telemetrically
until union. Conventional radiographs and a CT scan at 12 weeks
were performed routinely, and healing was staged according to the
CT scans. All nonunions healed at a mean of 21.5 weeks (13 to 37).
Well before any radiological signs of healing could be detected,
a substantial decrease in elasticity was recorded. The relative
elasticity decreased to 50% at a mean of 7.8 weeks (3.5 to 13) and
to 10% at a mean of 19.3 weeks (4.5 to 37). At 12 weeks the mean
relative elasticity was 28.1% (0% to 56%). The relative elasticity
was significantly different between the different healing stages
as determined by the CT scans. Incorporating load measuring electronics into implants is a promising
option for the assessment of bone healing. Future application might
lead to a reduction in the need for exposure to ionising radiation
to monitor fracture healing.
Peri-prosthetic bone loss caused by stress shielding may be associated with aseptic loosening of femoral components. In order to increase primary stability and to reduce stress shielding, a three-dimensional, cementless individual femoral (Evolution K) component was manufactured using pre-operative CT scans. Using dual energy x-ray absorptiometry, peri-prosthetic bone density was measured in 43 patients, three months, six months, 3.6 and 4.6 years after surgery. At final follow-up there was a significant reduction in mean bone density in the proximal Gruen zones of −30.3% (zone 7) and −22.8% (zone 1). The density in the other zones declined by a mean of between −4% and −16%. We conclude that the manufacture of a three-dimensional, custom-made femoral component could not prevent a reduction in peri-prosthetic bone density.
Massive endoprostheses using a cemented intramedullary stem are widely used to allow early resumption of activity after surgery for tumours. The survival of the prosthesis varies with the anatomical site, the type of prosthesis and the mode of fixation. Revision surgery is required in many cases because of aseptic loosening. Insertion of a second cemented endoprosthesis may be difficult because of the poor quality of the remaining bone, and loosening recurs quickly. We describe a series of 14 patients with triplate fixation in difficult revision or joint-sparing tumour surgery with a minimum follow-up of four years. The triplate design incorporated well within a remodelled cortex to achieve osseomechanical integration with all patients regaining their original level of function within five months. Our preliminary results suggest that this technique may provide an easy, biomechanically friendly alternative to insertion of a further device with an intramedullary stem, which has a shorter lifespan in revision or joint-sparing tumour surgery. A short segment of bone remaining after resection of a tumour will not accept an intramedullary stem, but may be soundly fixed using this method.
We investigated the effect of stimulation with a pulsed electromagnetic field on the osseointegration of hydroxyapatite in cortical bone in rabbits. Implants were inserted into femoral cortical bone and were stimulated for six hours per day for three weeks. Electromagnetic stimulation improved osseointegration of hydroxyapatite compared with animals which did not receive this treatment in terms of direct contact with the bone, the maturity of the bone and mechanical fixation. The highest values of maximum push-out force (Fmax) and ultimate shear strength (σu) were observed in the treated group and differed significantly from those of the control group at three weeks (Fmax; p <
0.0001; σu, p <
0.0005).
Haematogenous osteomyelitis in newborns and infants usually occurs in the long bones and is rare in the short or flat bones. We present two neonates with osteomyelitis of the upper cervical spine affecting the second to fourth cervical vertebrae and the first and second cervical vertebrae, respectively. Despite some delay in diagnosis, both responded successfully to conservative treatment with antibiotics, a cervical collar and needle puncture. The latest follow-up at six and seven years, respectively, showed no persistent neurological deficit and a normal diameter of the cervical spinal canal on MRI.
Our objective was to examine the rate of revision
and its predictive factors in patients undergoing total shoulder arthroplasty
(TSA). We used prospectively collected data from the Mayo Clinic
Total Joint Registry to examine five-, ten- and 20-year revision-free
survival following TSA and the predictive factors. We examined patient
characteristics (age, gender, body mass index, comorbidity), implant
fixation (cemented
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
In revision total hip replacement, bone loss can be managed by impacting porous bone chips. In order to guarantee sufficient mechanical strength, the bone chips have to be compacted. The aim of this study was to determine in an We found that the pneumatic method reached higher values of impaction hardness, contact stiffness and bulk density suggesting an increase in stability of the implant. No significant differences were found between the two different methods concerning the penetration resistance. The pneumatic method might reduce the risk of fracture
We report the results of 79 patients (81 hips)
who underwent impaction grafting at revision hip replacement using the
Exeter femoral stem. Their mean age was 64 years (31 to 83). According
to the Endoklinik classification, 20 hips had a type 2 bone defect,
40 had type 3, and 21 had type 4. The mean follow-up for unrevised
stems was 10.4 years (5 to 17). There were 12 re-operations due to intra- and post-operative
fractures, infection (one hip) and aseptic loosening (one hip).
All re-operations affected type 3 (6 hips) and 4 (6 hips) bone defects.
The survival rate for re-operation for any cause was 100% for type
2, 81.2% (95% confidence interval (CI) 67.1 to 95.3) for type 3,
and 70.8% (95% CI 51.1 to 90.5) for type 4 defects at 14 years.
The survival rate with further revision for aseptic loosening as
the end point was 98.6% (95% CI 95.8 to 100). The final clinical
score was higher for patients with type 2 bone defects than type
4 regarding pain, function and range of movement. Limp was most
frequent in the type 4 group (p <
0.001). The mean subsidence
of the stem was 2.3 mm ( The impacted bone grafting technique has good clinical results
in femoral revision. However, major bone defects affect clinical
outcome and also result in more operative complications.
Peri-prosthetic femoral fracture after total hip replacement (THR) is associated with a poor outcome and high mortality. However, little is known about its long-term incidence after uncemented THR. We retrospectively reviewed a consecutive series of 326 patients (354 hips) who had received a CLS Spotorno replacement with an uncemented, straight, collarless tapered titanium stem between January 1985 and December 1989. The mean follow-up was 17 years (15 to 20). The occurrence of peri-prosthetic femoral fracture during follow-up was noted. Kaplan-Meier survival analysis was used to estimate the cumulative incidence of fracture. At the last follow-up, 86 patients (89 hips) had died and eight patients (eight hips) had been lost to follow-up. A total of 14 fractures in 14 patients had occurred. In ten hips, the femoral component had to be revised and in four the fracture was treated by open reduction and internal fixation. The cumulative incidence of peri-prosthetic femoral fracture was 1.6% (95% confidence interval 0.7 to 3.8) at ten years and 4.5% (95% confidence interval 2.6 to 8.0) at 17 years after the primary THR. There was no association between the occurrence of fracture and gender or age at the time of the primary replacement. Our findings indicate that peri-prosthetic femoral fracture is a significant mode of failure in the long term after the insertion of an uncemented CLS Spotorno stem. Revision rates for this fracture rise in the second decade. Further research is required to investigate the risk factors involved in the occurrence of late peri-prosthetic femoral fracture after the implantation of any uncemented stem, and to assess possible methods of prevention.
This study evaluated the results of a physeal-sparing technique of intra-articular anterior cruciate ligament (ACL) reconstruction in skeletally immature patients, with particular reference to growth disturbance. Between 1992 and 2007, 57 children with a mean age of 12.2 years (6.8 to 14.5) underwent ACL reconstruction using the same technique. At a mean of 5.5 years (2 to 14) after surgery, 56 patients underwent clinical and radiological evaluation. At that time, 49 patients (87.5%) had reached bony maturity and 53 (95%) achieved A or B according to the IKDC 2000 classification. Four patients had stopped participation in sports because of knee symptoms, and three patients (5.4%) had a subsequent recurrent ACL injury. There was no clinical or radiological evidence of growth disturbance after a mean growth in stature of 20.0 cm (3 to 38). This study demonstrates that ACL reconstruction sparing the physes in children is a safe technique protecting against meniscal tears and giving better results than reconstruction in adults, without causing significant growth disturbance.
The major advantage of hip resurfacing is the decreased amount of bone resection compared with a standard total hip replacement. Fracture of the femoral neck is the most common early complication and poor bone quality is a major risk factor. We undertook a prospective consecutive case control study examining the effect of bone mineral density changes in patients undergoing hip resurfacing surgery. A total of 423 patients were recruited with a mean age of 54 years (24 to 87). Recruitment for this study was dependent on pre-operative bilateral femoral bone mineral density results not being osteoporotic. The operated and non-operated hips were assessed. Bone mineral density studies were repeated over a two-year period. The results showed no significant deterioration in the bone mineral density in the superolateral region in the femoral neck, during that period. These findings were in the presence of a markedly increased level of physical activity, as measured by the short-form 36 health survey physical function score.
We treated 32 displaced mallet finger fractures by a two extension block Kirschner-wire technique. The clinical and radiological outcomes were evaluated at a mean follow-up of 49 months (25 to 84). The mean joint surface involvement was 38.4% (33% to 50%) and 18 patients (56%) had accompanying joint subluxation. All 32 fractures united with a mean time to union of 6.2 weeks (5.1 to 8.2). Congruent joint surfaces and anatomical reduction were seen in all cases. The mean flexion of the distal interphalangeal joints was 83.1° (75° to 90°) and the mean extension loss was 0.9° (0° to 7°). No digit had a prominent dorsal bump or a recurrent mallet deformity. We believe that this technique, when properly applied, produces satisfactory results both clinically and radiologically.
The management of joint replacement in lysosomal storage diseases has not been well reported. We present three patients with progressive degenerative changes of the hips who required bilateral total hip replacement in early childhood. The stature of the patients make it essential to have access to appropriately scaled prostheses. Consideration has to be given to associated disorders of the skeleton which must be carefully screened to ensure safety in providing appropriate anaesthesia as well as ensuring that there is no cardiac abnormality. In one patient, a periprosthetic fracture was sustained in one hip in the early post-operative course requiring internal fixation. The patient made a full recovery and all six hips were clinically and radiologically satisfactory at mid-term review.
We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants. This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement.
Bone preservation and physiological distribution of forces on the proximal femur are key elements in introducing a successful uncemented total hip replacement. In order to achieve this, in the mid 1990s, we developed an ultra short proximal loading custom-made component with a lateral flare, a high femoral neck osteotomy and without a diaphyseal stem. We report the outcome of 129 custom-made hydroxyapatite-coated uncemented short femoral components inserted into 109 patients between June 1995 and May 2004. The mean age of the patients was 51 years (21 to 71) and the mean follow-up was eight years (4.9 to 14.1). Bone behaviour around the implant was studied on the post-operative radiographs. The mean Harris hip score improved from 44 (8 to 66) pre-operatively to 95 (76 to 100) at final follow-up. The Western Ontario MacMaster University Osteoarthritis index was 93 of 100 at final review. None of the patients reported thigh pain. A total of five hips were revised, three for polyethylene liner exchange and two for complete revision of the acetabular component. No femoral components were revised. The radiological changes in the proximal femur were generally good, as evidenced by spot welds both on the medial and lateral aspects of the femur. No component migrated. The presence of a lateral flare and use of a high osteotomy of the femoral neck provided good clinical and radiological results. The absence of a diaphyseal portion of the stem did not impair stability.