The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded.Objectives
Methods
Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline. Ten-week-old male C56/Bl6J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop.Objectives
Methods
The management of acetabular defects at the time of revision hip arthroplasty surgery is a challenge. This study presents the results of a long-term follow-up study of the use of irradiated allograft bone in acetabular reconstruction. Between 1990 and 2000, 123 hips in 110 patients underwent acetabular reconstruction for aseptic loosening, using impaction bone grafting with frozen, irradiated, and morsellized femoral heads and a cemented acetabular component. A total of 55 men and 55 women with a mean age of 64.3 years (26 to 97) at the time of revision surgery are included in this study.Aims
Patients and Methods
MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined.Objectives
Methods
Prosthetic joint infection (PJI) and aseptic loosening in total hip arthroplasty (THA) can present with pain and osteolysis. The Musculoskeletal Infection Society (MSIS) has provided criteria for the diagnosis of PJI. The aim of our study was to analyze the utility of F18-fluorodeoxyglucose (FDG) positron emission tomography (PET) CT scan in the preoperative diagnosis of septic loosening in THA, based on the current MSIS definition of prosthetic joint infection. A total of 130 painful unilateral cemented THAs with a mean follow-up of 5.17 years (Aims
Patients and Methods
The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01). Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.Objectives
Methods
Osteoporosis is a systemic bone metabolic disease, which often occurs among the elderly. Angelica polysaccharide (AP) is the main component of angelica sinensis, and is widely used for treating various diseases. However, the effects of AP on osteoporosis have not been investigated. This study aimed to uncover the functions of AP in mesenchymal stem cell (MSC) proliferation and osteoblast differentiation. MSCs were treated with different concentrations of AP, and then cell viability, Cyclin D1 protein level, and the osteogenic markers of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2) were examined by Cell Counting Kit-8 (CCK-8) and western blot assays, respectively. The effect of AP on the main signalling pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin was determined by western blot. Following this, si-H19#1 and si-H19#2 were transfected into MSCs, and the effects of H19 on cell proliferation and osteoblast differentiation in MSCs were studied. Finally, Objectives
Methods
Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote Within the present study, we evaluated whether this promising new method, using 99mTc-hydroxydiphosphonate (99mTc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with 99mTc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured.Objectives
Methods
Osteoporosis is a metabolic disease resulting in progressive loss of bone mass as measured by bone mineral density (BMD). Physical exercise has a positive effect on increasing or maintaining BMD in postmenopausal women. The contribution of exercise to the regulation of osteogenesis in osteoblasts remains unclear. We therefore investigated the effect of exercise on osteoblasts in ovariectomized mice. We compared the activity of differentially expressed genes of osteoblasts in ovariectomized mice that undertook exercise (OVX+T) with those that did not (OVX), using microarray and bioinformatics.Objectives
Methods
Total ankle arthroplasty (TAA) has become the most reliable surgical solution for patients with end-stage arthritis of the ankle. Aseptic loosening of the talar component is the most common complication. A custom-made artificial talus can be used as the talar component in a combined TAA for patients with poor bone stock of the talus. The purpose of this study was to investigate the functional and clinical outcomes of combined TAA. Ten patients (two men, eight women; ten ankles) treated using a combined TAA between 2009 and 2013 were matched for age, gender, and length of follow-up with 12 patients (one man, 11 women; 12 ankles) who underwent a standard TAA. All had end-stage arthritis of the ankle. The combined TAA features a tibial component of the TNK ankle (Kyocera, Kyoto, Japan) and an alumina ceramic artificial talus (Kyocera), designed using individualized CT data. The mean age at the time of surgery in the combined TAA and standard TAA groups was 71 years (Aims
Patients and Methods
Many Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017.Objectives
Methods
Cardiac magnetic resonance (CMR) was used to assess whether cardiac function or tissue composition was affected in patients with well-functioning metal-on-metal hip resurfacing arthroplasties (MoMHRA) when compared with a group of controls, and to assess if metal ion levels correlated with any of the functional or structural parameters studied. In all, 30 participants with no significant cardiac history were enrolled: 20 patients with well-functioning MoMHRA at mean follow-up of 8.3 years post-procedure (ten unilateral, ten bilateral; 17 men, three women) and a case-matched control group of ten non-MoM total hip arthroplasty patients (six men, four women). The mean age of the whole cohort (study group and controls) at the time of surgery was 50.6 years (41.0 to 64.0). Serum levels of cobalt and chromium were measured, and all patients underwent CMR imaging, including cine, T2* measurements, T1 and T2 mapping, late gadolinium enhancement, and strain measurements.Aims
Patients and Methods
Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from
The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing. Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium Objectives
Methods
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
The early diagnosis of caisson disease of bone is hindered by the long delay which must elapse before an abnormality becomes apparent on a radiograph. The possible use of bone scintigraphy for this purpose was investigated. Necrosis of the
Indocyanine green (ICG) fluorescence angiography is an emerging technique that can provide detailed anatomical information during surgery. The purpose of this study is to determine whether ICG fluorescence angiography can be used to evaluate the blood flow of the rotator cuff tendon in the clinical setting. Twenty-six patients were evaluated from October 2016 to December 2017. The participants were categorized into three groups based on their diagnoses: the rotator cuff tear group; normal rotator cuff group; and adhesive capsulitis group. After establishing a posterior standard viewing portal, intravenous administration of ICG at 0.2 mg/kg body weight was performed, and fluorescence images were recorded. The time from injection of the drug to the beginning of enhancement of the observed area was measured. The hypovascular area in the rotator cuff was evaluated, and the ratio of the hypovascular area to the anterolateral area of the rotator cuff tendon was calculated (hypovascular area ratio).Objectives
Methods
Little is known about tissue changes underlying bone marrow lesions (BMLs) in non-weight-bearing joints with osteoarthritis (OA). Our aim was to characterize BMLs in OA of the hand using dynamic histomorphometry. We therefore quantified bone turnover and angiogenesis in subchondral bone at the base of the thumb, and compared the findings with control bone from hip OA. Patients with OA at the base of the thumb, or the hip, underwent preoperative MRI to assess BMLs, and tetracycline labelling to determine bone turnover. Three groups were compared: trapezium bones removed by trapeziectomy from patients with thumb base OA (n = 20); femoral heads with (n = 24); and those without (n = 9) BMLs obtained from patients with hip OA who underwent total hip arthroplasty.Objectives
Methods