We have performed a clinical and radiological analysis of 105 shoulder arthroplasties in patients with rheumatoid arthritis. The clinical results showed improvements in the Constant-Murley and Association of Shoulder and Elbow Surgeons score of 21 and 35, respectively. Both were statistically significant (p <
0.001). This improvement was maintained over a period of 8.8 years. There was no statistically significant difference in the scores after hemiarthroplasty and those after total arthroplasty. The presence of an intact rotator cuff was associated with improved function in both groups. In spite of the use of an
Radiological changes and differences between cemented and uncemented components of Grammont reverse shoulder arthroplasties (DePuy) were analysed at a mean follow-up of 9.6 years (8 to 12). Of 122 reverse shoulder arthroplasties implanted in five shoulder centres between 1993 and 2000, a total of 68 (65 patients) were available for study. The indications for reversed shoulder arthroplasty were cuff tear arthropathy in 48 shoulders, revision of shoulder prostheses of various types in 11 and massive cuff tear in nine. The development of scapular notching, bony scapular spur formation, heterotopic ossification, glenoid and humeral radiolucencies, stem subsidence, radiological signs of stress shielding and resorption of the tuberosities were assessed on standardised true anteroposterior and axillary radiographs. A scapular notch was observed in 60 shoulders (88%) and was associated with the superolateral approach (p = 0.009). Glenoid radiolucency was present in 11 (16%), bony scapular spur and/or ossifications in 51 (75%), and subsidence of the stem and humeral radiolucency in more than three zones were present in three (8.8%) and in four (11.8%) of 34 cemented components, respectively, and in one (2.9%) and two (5.9%) of 34 uncemented components, respectively. Radiological signs of stress shielding were significantly more frequent with uncemented components (p <
0.001), as was resorption of the greater (p <
0.001) and lesser tuberosities (p = 0.009).
There is little information available at present regarding the mechanisms of failure of modern metallic radial head implants. Between 1998 and 2008, 44 consecutive patients (47 elbows) underwent removal of a failed metallic radial head replacement. In 13 patients (13 elbows) the initial operation had been undertaken within one week of a fracture of the radial head, at one to six weeks in seven patients (seven elbows) and more than six weeks (mean of 2.5 years (2 to 65 months)) in 22 patients (25 elbows). In the remaining two elbows the replacement was inserted for non-traumatic reasons. The most common indication for further surgery was painful loosening (31 elbows). Revision was undertaken for stiffness in 18 elbows, instability in nine, and deep infection in two. There were signs of over-lengthening of the radius in 11 elbows. Degenerative changes were found in all but one. Only three loose implants had been fixed with cement. Instability was not identified in any of the bipolar implants.