The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.Aims
Methods
We assessed the functional outcome following fracture of the tibial plateau in 63 consecutive patients. Fifty-one patients were treated by internal fixation, five by combined internal and external fixation and seven non-operatively. Measurements of joint movement and muscle function were made using a muscle dynamometer at three, six and 12 months following injury. Thirteen patients (21%) had a residual flexion contracture at one year. Only nine (14%) patients achieved normal quadriceps muscle strength at 12 months, while 19 (30%) achieved normal hamstring muscle strength. Recovery was significantly slower in patients older than 40 years of age. We conclude that there is significant impairment of movement and muscle function after fracture of the tibial plateau and that the majority of patients have not fully recovered one year after injury.