Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1127 - 1133
1 Aug 2013
Lama P Le Maitre CL Dolan P Tarlton JF Harding IJ Adams MA

The belief that an intervertebral disc must degenerate before it can herniate has clinical and medicolegal significance, but lacks scientific validity. We hypothesised that tissue changes in herniated discs differ from those in discs that degenerate without herniation. Tissues were obtained at surgery from 21 herniated discs and 11 non-herniated discs of similar degeneration as assessed by the Pfirrmann grade. Thin sections were graded histologically, and certain features were quantified using immunofluorescence combined with confocal microscopy and image analysis. Herniated and degenerated tissues were compared separately for each tissue type: nucleus, inner annulus and outer annulus. Herniated tissues showed significantly greater proteoglycan loss (outer annulus), neovascularisation (annulus), innervation (annulus), cellularity/inflammation (annulus) and expression of matrix-degrading enzymes (inner annulus) than degenerated discs. No significant differences were seen in the nucleus tissue from herniated and degenerated discs. Degenerative changes start in the nucleus, so it seems unlikely that advanced degeneration caused herniation in 21 of these 32 discs. On the contrary, specific changes in the annulus can be interpreted as the consequences of herniation, when disruption allows local swelling, proteoglycan loss, and the ingrowth of blood vessels, nerves and inflammatory cells. In conclusion, it should not be assumed that degenerative changes always precede disc herniation. Cite this article: Bone Joint J 2013;95-B:1127–33


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1007 - 1012
1 Sep 2023
Hoeritzauer I Paterson M Jamjoom AAB Srikandarajah N Soleiman H Poon MTC Copley PC Graves C MacKay S Duong C Leung AHC Eames N Statham PFX Darwish S Sell PJ Thorpe P Shekhar H Roy H Woodfield J

Aims

Patients with cauda equina syndrome (CES) require emergency imaging and surgical decompression. The severity and type of symptoms may influence the timing of imaging and surgery, and help predict the patient’s prognosis. Categories of CES attempt to group patients for management and prognostication purposes. We aimed in this study to assess the inter-rater reliability of dividing patients with CES into categories to assess whether they can be reliably applied in clinical practice and in research.

Methods

A literature review was undertaken to identify published descriptions of categories of CES. A total of 100 real anonymized clinical vignettes of patients diagnosed with CES from the Understanding Cauda Equina Syndrome (UCES) study were reviewed by consultant spinal surgeons, neurosurgical registrars, and medical students. All were provided with published category definitions and asked to decide whether each patient had ‘suspected CES’; ‘early CES’; ‘incomplete CES’; or ‘CES with urinary retention’. Inter-rater agreement was assessed for all categories, for all raters, and for each group of raters using Fleiss’s kappa.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 400 - 411
15 Mar 2023
Hosman AJF Barbagallo G van Middendorp JJ

Aims

The aim of this study was to determine whether early surgical treatment results in better neurological recovery 12 months after injury than late surgical treatment in patients with acute traumatic spinal cord injury (tSCI).

Methods

Patients with tSCI requiring surgical spinal decompression presenting to 17 centres in Europe were recruited. Depending on the timing of decompression, patients were divided into early (≤ 12 hours after injury) and late (> 12 hours and < 14 days after injury) groups. The American Spinal Injury Association neurological (ASIA) examination was performed at baseline (after injury but before decompression) and at 12 months. The primary endpoint was the change in Lower Extremity Motor Score (LEMS) from baseline to 12 months.


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 677 - 682
1 Jun 2020
Katzouraki G Zubairi AJ Hershkovich O Grevitt MP

Aims

Diagnosis of cauda equina syndrome (CES) remains difficult; clinical assessment has low accuracy in reliably predicting MRI compression of the cauda equina (CE). This prospective study tests the usefulness of ultrasound bladder scans as an adjunct for diagnosing CES.

Methods

A total of 260 patients with suspected CES were referred to a tertiary spinal unit over a 16-month period. All were assessed by Board-eligible spinal surgeons and had transabdominal ultrasound bladder scans for pre- and post-voiding residual (PVR) volume measurements before lumbosacral MRI.


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1390 - 1394
1 Oct 2015
Todd NV

There is no universally agreed definition of cauda equina syndrome (CES). Clinical signs of CES including direct rectal examination (DRE) do not reliably correlate with cauda equina (CE) compression on MRI. Clinical assessment only becomes reliable if there are symptoms/signs of late, often irreversible, CES. The only reliable way of including or excluding CES is to perform MRI on all patients with suspected CES. If the diagnosis is being considered, MRI should ideally be performed locally in the District General Hospitals within one hour of the question being raised irrespective of the hour or the day. Patients with symptoms and signs of CES and MRI confirmed CE compression should be referred to the local spinal service for emergency surgery.

CES can be subdivided by the degree of neurological deficit (bilateral radiculopathy, incomplete CES or CES with retention of urine) and also by time to surgical treatment (12, 24, 48 or 72 hour). There is increasing understanding that damage to the cauda equina nerve roots occurs in a continuous and progressive fashion which implies that there are no safe time or deficit thresholds. Neurological deterioration can occur rapidly and is often associated with longterm poor outcomes. It is not possible to predict which patients with a large central disc prolapse compressing the CE nerve roots are going to deteriorate neurologically nor how rapidly. Consensus guidelines from the Society of British Neurological Surgeons and British Association of Spinal Surgeons recommend decompressive surgery as soon as practically possible which for many patients will be urgent/emergency surgery at any hour of the day or night.

Cite this article: Bone Joint J 2015;97-B:1390–4


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 527 - 531
1 Apr 2015
Todd NV Skinner D Wilson-MacDonald J

We assessed the frequency and causes of neurological deterioration in 59 patients with spinal cord injury on whom reports were prepared for clinical negligence litigation. In those who deteriorated neurologically we assessed the causes of the change in neurology and whether that neurological deterioration was potentially preventable. In all 27 patients (46%) changed neurologically, 20 patients (74% of those who deteriorated) had no primary neurological deficit. Of those who deteriorated, 13 (48%) became Frankel A. Neurological deterioration occurred in 23 of 38 patients (61%) with unstable fractures and/or dislocations; all 23 patients probably deteriorated either because of failures to immobilise the spine or because of inappropriate removal of spinal immobilisation. Of the 27 patients who altered neurologically, neurological deterioration was, probably, avoidable in 25 (excess movement in 23 patients with unstable injuries, failure to evacuate an epidural haematoma in one patient and over-distraction following manipulation of the cervical spine in one patient). If existing guidelines and standards for the management of actual or potential spinal cord injury had been followed, neurological deterioration would have been prevented in 25 of the 27 patients (93%) who experienced a deterioration in their neurological status.

Cite this article: Bone Joint J 2015;97-B:527–31.