Aims. Orthopaedic and reconstructive surgeons are faced with large defects after the resection of malignant tumours of the sacrum. Spinopelvic reconstruction is advocated for resections above the level of the S1 neural foramina or involving the sacroiliac
Rotating-hinge knee prostheses are commonly used to reconstruct the distal femur after resection of a tumour, despite the projected long-term burden of reoperation due to complications. Few studies have examined the factors that influence their failure and none, to our knowledge, have used competing risk models to do so. The purpose of this study was to determine the risk factors for failure of a rotating-hinge knee distal femoral arthroplasty using the Fine-Gray competing risk model. We retrospectively reviewed 209 consecutive patients who, between 1991 and 2016, had undergone resection of the distal femur for tumour and reconstruction using a rotating-hinge knee prosthesis. The study endpoint was failure of the prosthesis, defined as removal of the femoral component, the tibial component, or the bone-implant fixation; major revision (exchange of the femoral component, tibial component, or the bone-implant fixation); or amputation.Aims
Methods
Massive endoprostheses using a cemented intramedullary stem are widely used to allow early resumption of activity after surgery for tumours. The survival of the prosthesis varies with the anatomical site, the type of prosthesis and the mode of fixation. Revision surgery is required in many cases because of aseptic loosening. Insertion of a second cemented endoprosthesis may be difficult because of the poor quality of the remaining bone, and loosening recurs quickly. We describe a series of 14 patients with triplate fixation in difficult revision or joint-sparing tumour surgery with a minimum follow-up of four years. The triplate design incorporated well within a remodelled cortex to achieve osseomechanical integration with all patients regaining their original level of function within five months. Our preliminary results suggest that this technique may provide an easy, biomechanically friendly alternative to insertion of a further device with an intramedullary stem, which has a shorter lifespan in revision or joint-sparing tumour surgery. A short segment of bone remaining after resection of a tumour will not accept an intramedullary stem, but may be soundly fixed using this method.