This study aimed to investigate the relationship between changes in patellar height and clinical outcomes at a mean follow-up of 7.7 years (5 to 10) after fixed-bearing posterior-stabilized total knee arthroplasty (PS-TKA). We retrospectively evaluated knee radiographs of 165 knees, which underwent fixed-bearing PS-TKA with patella resurfacing. The incidence of patella baja and changes in patellar height over a minimum of five years of follow-up were determined using Insall-Salvati ratio (ISR) measurement. We examined whether patella baja (ISR < 0.8) at final follow-up affected clinical outcomes, knee joint range of motion (ROM), and Knee Society Score (KSS). We also assessed inter- and intrarater reliability of ISR measurements and focused on the relationship between patellar height reduction beyond measurement error and clinical outcomes.Aims
Methods
Preservation of posterior condylar offset (PCO) has been shown to correlate with improved functional results after primary total knee arthroplasty (TKA). Whether this is also the case for revision TKA, remains unknown. The aim of this study was to assess the independent effect of PCO on early functional outcome after revision TKA. A total of 107 consecutive aseptic revision TKAs were performed by a single surgeon during an eight-year period. The mean age was 69.4 years (39 to 85) and there were 59 female patients and 48 male patients. The Oxford Knee Score (OKS) and Short-form (SF)-12 score were assessed pre-operatively and one year post-operatively. Patient satisfaction was also assessed at one year. Joint line and PCO were assessed radiographically at one year.Objectives
Methods
The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively. The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year). The linear wear rate of the Oxford UKR remains very low into the third decade. We believe that phase-2 bearings had lower wear rates than phase-1 implants because of the improved bearing design and surgical technique which decreased the incidence of impingement. We conclude that the design of the Oxford UKR gives low rates of wear in the long term.
Mechanical failure because of wear or fracture of the polyethylene tibial post in posteriorly-stabilised total knee replacements has been extensively described. In this study of 12 patients with a clinically and radiologically successful NexGen LPS posteriorly-stabilised prosthesis impingement of the anterior tibial post was evaluated in vivo in three dimensions during gait using radiologically-based image-matching techniques. Impingement was observed in all images of the patients during the stance phase, although the NexGen LPS was designed to accommodate 14° of hyperextension of the component before impingement occurred. Impingement arises as a result of posterior translation of the femur during the stance phase. Further attention must therefore be given to the configuration of the anterior portion of the femoral component and the polyethylene post when designing posteriorly-stabilised total knee replacements.
The cementless Oxford unicompartmental knee replacement
has been demonstrated to have superior fixation on radiographs and
a similar early complication rate compared with the cemented version.
However, a small number of cases have come to our attention where,
after an apparently successful procedure, the tibial component subsides into
a valgus position with an increased posterior slope, before becoming
well-fixed. We present the clinical and radiological findings of
these six patients and describe their natural history and the likely
causes. Two underwent revision in the early post-operative period,
and in four the implant stabilised and became well-fixed radiologically with
a good functional outcome. This situation appears to be avoidable by minor modifications
to the operative technique, and it appears that it can be treated
conservatively in most patients. Cite this article:
The rotational alignment of the tibia is an unresolved issue in knee replacement. A poor functional outcome may be due to malrotation of the tibial component. Our aim was to find a reliable method for positioning the tibial component in knee replacement. CT scans of 19 knees were reconstructed in three dimensions and orientated vertically. An axial plane was identified 20 mm below the tibial spines. The centre of each tibial condyle was calculated from ten points taken round the condylar cortex. The tibial tubercle centre was also generated as the centre of the circle which best fitted eight points on the outside of the tubercle in an axial plane at the level of its most prominent point. The derived points were identified by three observers with errors of 0.6 mm to 1 mm. The medial and lateral tibial centres were constant features (radius 24 mm ( Alignment of the knee when based on this anatomical axis was more reliable than either the posterior surfaces or any axis involving the tubercle which was the least reliable landmark in the region.
This prospective study describes the complications and survival of the first 688 Phase 3 Oxford medial unicompartmental knee replacements implanted using a minimally-invasive technique by two surgeons and followed up independently. None was lost to follow-up. We had carried out 132 of the procedures more than five years ago. The clinical assessment of 101 of these which were available for review at five years is also presented. Nine of the 688 knees were revised: four for infection, three for dislocation of the bearing and two for unexplained pain. A further seven knees (1%) required other procedures: four had a manipulation under anaesthesia, two an arthroscopy and one a debridement for superficial infection. The survival rate at seven years was 97.3% (95% confidence interval 5.3). At five years, 96% of the patients had a good or excellent American Knee Society score, the mean Oxford knee score was 39 and the mean flexion was 133°. This study demonstrates that the minimally-invasive Oxford unicompartmental knee replacement is a reliable and effective procedure.