Intramedullary infection in long bones represents
a complex clinical challenge, with an increasing incidence due to the
increasing use of intramedullary fixation. We report a prospective
case series using an intramedullary reaming device, the Reamer–Irrigator–Aspirator
(RIA) system, in association with antibiotic cement rods for the
treatment of lower limb long bone infections. A total of 24 such
patients, 16 men and eight women, with a mean age of 44.5 years
(17 to 75), 14 with femoral and 10 with tibial infection, were treated
in a staged manner over a period of 2.5 years in a single referral
centre. Of these, 21 patients had had previous surgery, usually
for fixation of a fracture (seven had sustained an open fracture
originally and one had undergone fasciotomies). According to the
Cierny–Mader classification system, 18 patients were classified
as type 1A, four as 3A (discharging sinus tract), one as type 4A
and one as type 1B. Cite this article:
A silver-containing hydroxyapatite (Ag-HA) coating has been developed using thermal spraying technology. We evaluated the osteoconductivity of this coating on titanium (Ti) implants in rat tibiae in relation to bacterial infection in joint replacement. At 12 weeks, the mean affinity indices of bone formation of a Ti, an HA, a 3%Ag-HA and a 50%Ag-HA coating were 97.3%, 84.9%, 81.0% and 40.5%, respectively. The mean affinity indices of bone contact of these four coatings were 18.8%, 83.7%, 77.2% and 40.5%, respectively. The indices of bone formation and bone contact around the implant of the 3%Ag-HA coating were similar to those of the HA coating, and no significant differences were found between them (bone formation, p = 0.99; bone contact, p = 0.957). However, inhibition of bone formation was observed with the 50%Ag-HA coating. These results indicate that the 3%Ag-HA coating has low toxicity and good osteoconductivity, and that the effect of silver toxicity on osteoconductivity depends on the dose.