We have evaluated the survivorship, outcomes, and failures of an interlocking, reconstruction-mode stem-sideplate implant used to preserve the native hip joint and achieve proximal fixation when there is little residual femur during large endoprosthetic reconstruction of the distal femur. A total of 14 patients underwent primary or revision reconstruction of a large femoral defect with a short remaining proximal femur using an interlocking, reconstruction-mode stem-sideplate for fixation after oncological distal femoral and diaphyseal resections. The implant was attached to a standard endoprosthetic reconstruction system. The implant was attached to a standard endoprosthetic reconstruction system. None of the femoral revisions were amenable to standard cemented or uncemented stem fixation. Patient and disease characteristics, surgical history, final ambulatory statusAims
Methods
Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves).Aims
Methods
Monostotic fibrous dysplasia of the proximal
femur has a variable clinical course, despite its reported limited tendency
to progress. We investigated the natural history and predisposing factors
for progression of dysplasia in a group of 76 patients with a mean
follow-up of 8.5 years (2.0 to 15.2). Of these, 31 (41%) presented
with an asymptomatic incidental lesion while 45 (59%) presented
with pain or a pathological fracture. A group of 23 patients (30%)
underwent early operative treatment for pain (19: 25%) or pathological
fracture (4: 5%). Of the 53 patients who were initially treated non-operatively,
45 (85%) remained asymptomatic but eight (15%) needed surgery because
of pain or fracture. The progression-free survival of the observation
group was 81% ( The risk of experiencing pain or pathological fracture is considerable
in monostotic fibrous dysplasia of the proximal femur. Patients
presenting with pain, a limp or radiological evidence of microfracture
have a high chance of needing surgical treatment. Cite this article:
We report positive and negative factors associated with the most commonly-used methods of reconstruction after pathological fracture of the proximal femur. The study was based on 142 patients treated surgically for 146 metastatic lesions between 1996 and 2003. The local rate of failure was 10.3% (15 of 146). Of 37 operations involving osteosynthetic devices, six failed (16.2%) compared with nine (8.3%) in 109 operations involving endoprostheses. Of nine cases of prosthetic failure, four were due to periprosthetic fractures and three to recurrent dislocation. In the osteosynthesis group, three (13.6%) of 22 reconstruction nails failed. The two-year risk of re-operation after any type of osteosynthesis was 0.35 compared with 0.18 after any type of endoprosthetic reconstruction (p = 0.07). Endoprosthetic reconstructions are preferable to the use of reconstruction nails and other osteosynthetic devices for the treatment of metastatic lesions in the proximal third of the femur.
We investigated the clinical outcome of internal
fixation for pathological fracture of the femur after primary excision of
a soft-tissue sarcoma that had been treated with adjuvant radiotherapy. A review of our database identified 22 radiation-induced fractures
of the femur in 22 patients (seven men, 15 women). We noted the
mechanism of injury, fracture pattern and any complications after
internal fixation, including nonunion, hardware failure, secondary
fracture or deep infection. The mean age of the patients at primary excision of the tumour
was 58.3 years (39 to 86). The mean time from primary excision to
fracture was 73.2 months (2 to 195). The mean follow-up after fracture
fixation was 65.9 months (12 to 205). Complications occurred in
19 patients (86%). Nonunion developed in 18 patients (82%), of whom
11 had a radiological nonunion at 12 months, five a nonunion and
hardware failure and two an infected nonunion. One patient developed
a second radiation-associated fracture of the femur after internal
fixation and union of the initial fracture. A total of 13 patients
(59%) underwent 24 revision operations. Internal fixation of a pathological fracture of the femur after
radiotherapy for a soft-tissue sarcoma has an extremely high rate
of complication and requires specialist attention. Cite this article:
Previously, we showed that case-specific non-linear
finite element (FE) models are better at predicting the load to failure
of metastatic femora than experienced clinicians. In this study
we improved our FE modelling and increased the number of femora
and characteristics of the lesions. We retested the robustness of
the FE predictions and assessed why clinicians have difficulty in
estimating the load to failure of metastatic femora. A total of
20 femora with and without artificial metastases were mechanically
loaded until failure. These experiments were simulated using case-specific
FE models. Six clinicians ranked the femora on load to failure and
reported their ranking strategies. The experimental load to failure
for intact and metastatic femora was well predicted by the FE models (R2 =
0.90 and R2 = 0.93, respectively). Ranking metastatic
femora on load to failure was well performed by the FE models (τ =
0.87), but not by the clinicians (0.11 <
τ <
0.42). Both the
FE models and the clinicians allowed for the characteristics of
the lesions, but only the FE models incorporated the initial bone
strength, which is essential for accurately predicting the risk
of fracture. Accurate prediction of the risk of fracture should
be made possible for clinicians by further developing FE models.
We have developed a hollow perforated cannulated screw. One or more of these was implanted percutaneously in 11 patients with an osteolytic metastasis in the femoral neck and multiple metastases elsewhere. They were supplemented by one or two additional standard 6.5 mm cannulated screws in nine patients. Polymethylmethacrylate bone cement was injected through the screw into the neck of the femur using small syringes, as in vertebroplasty. The mean amount of cement injected was 23.2 ml (17 to 30). Radiotherapy was started on the fourth post-operative day and chemotherapy, on average, was resumed a day later. Good structural stability and satisfactory relief from pain were achieved in all the patients. This technique may be useful in the palliation of metastases in the femoral neck.