In order to determine the usefulness of MRI in assessing autologous chondrocyte implantation (ACI) the first 57 patients (81 chondral lesions) with a 12-month review were evaluated clinically and with specialised MRI at three and 12 months. Improvement 12 months after operation was found subjectively (37.6 to 51.9) and in knee function levels (from 85% International Cartilage Repair Society (ICRS) III/IV to 61% I/II). The International Knee Documentation Committee (IKDC) scores showed an initial deterioration at three months (56% IKDC A/B) but marked improvement at 12 months (88% A/B). The MRI at three months showed 82% of patients with at least 50% defect fill, 59% with a normal or nearly normal signal at repair sites, 71% with a mild or no effusion and 80% with a mild or no underlying bone-marrow oedema. These improved at 12 months to 93%, 93%, 94% and 91%, respectively. The overall MR score at 12 months suggested production of normal or nearly normal cartilage in 82%, corresponding to a subjective improvement in 81% of patients and 88% IKDC A/B scores. Second-look surgery and biopsies in 15 patients (22 lesions) showed a moderate correlation of MRI with visual scoring; 70% of biopsies showed hyaline and hyaline-like cartilage. Thus, MRI at 12 months is a reasonable non-invasive means of assessment of ACI.
Objectives. Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results. Methods. We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO. Results. Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods. Conclusion. The majority of studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to animal model, DO protocol and cell transplantation regime remain to be further investigated.
Objectives. Lengthening osteotomies of the calcaneus in children are in general
grafted with bone from the iliac crest. Artificial bone grafts have
been introduced, however, their structural and clinical durability
has not been documented. Radiostereometric analysis (RSA) is a very
accurate and precise method for measurements of rigid body movements including
the evaluation of joint implant and fracture stability, however,
RSA has not previously been used in
We examined the radiographs from a prospective
Objectives. This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised
Using an osteotomy of the olecranon as a model of a transverse fracture in 22 cadaver elbows we determined the ability of three different types of suture and stainless steel wire to maintain reduction when using a tension-band technique to stabilise the bone. Physiological cyclical loading simulating passive elbow movement (15 N) and using the arms to push up from a chair (450 N) were applied using an Instron materials testing machine whilst monitoring the osteotomy site with a video extensometer. Each osteotomy was repaired by one of four materials, namely, Stainless Steel Wire (7), No 2 Ethibond (3), No 5 Ethibond (5), or No 2 FiberWire (7). There were no failures (movement of >
2 mm) with stainless steel wire or FiberWire and no significant difference in the movements measured across the site of the osteotomy (p = 0.99). The No. 2 Ethibond failed at 450 N and two of the five of No. 5 Ethibond sutures had a separation of >
2 mm at 450 N. FiberWire as the tension band in this model held the reduction as effectively as stainless steel wire and may reduce the incidence of discomfort from the hardware. On the basis of our findings we suggest that a
Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices.
Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA. This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.Aims
Methods
The effects of extracorporeal shock waves (ESWT) on tendon healing were assessed by observing histological and biomechanical parameters in a rat model of injury to the tendo Achillis. The injury was created by inserting an 18-G needle through tendo Achillis in 48 adult Wistar albino rats. The animals were divided into three groups. The first group received radiation only after the operation. The second received no shock waves and the third had 500 15 KV shocks on the second post-operative day. All the rats were killed on the 21st day after surgery. Histopathological analysis showed an increase in the number of capillaries and less formation of adhesions in the study group compared with the control group (p = 0.03). A significantly greater force was required to rupture the tendon in the study group (p = 0.028). Our findings suggest a basis for
Our aims were to describe the distribution of α-smooth muscle actin (SMA)-containing cells in Dupuytren’s tissue in vivo and to determine the effects of selected agents in regulating the expression of SMA in Dupuytren’s cells in vitro. In selected hypercellular zones of Dupuytren’s nodules up to 40% of the cells contained SMA, as shown by immunohistochemistry. A lower percentage (20%) of SMA-containing cells was found in regions of lower cellularity. A notable finding was that treatment in vitro of Dupuytren’s cells with platelet-derived growth factor significantly reduced the content of SMA. Cells from the same patients showed a significant increase in expression of SMA in response to treatment with transforming growth factor, which confirmed recent findings. In addition, interferon-γ, which has been previously used as a treatment for Dupuytren’s disease in a
Our objectives were to establish the envelope of passive movement and to demonstrate the kinematic behaviour of the knee during standard
Cancer-induced bone diseases are often associated with increased bone resorption and pathological fractures. In recent years, osteoprotective agents such as bisphosphonates have been studied extensively and have been shown to inhibit cancer-related bone resorption in experimental and
We report the findings from independent prospective clinical and laboratory-based joint-simulator studies of the performance of ceramic femoral heads of 22.225 mm diameter in cross-linked polyethylene (XLP) acetabular cups. We found remarkable qualitative and quantitative agreement between the clinical and simulator results for the wear characteristics with time, and confirmed that ceramic femoral heads penetrate the XLP cups at only about half the rate of otherwise comparable metal heads. In the
Proponents of the biological theory of aseptic loosening have in recent years tended to concentrate on the production and distribution of particulate ultra-high-molecular-weight polyethylene (UHMWPE) debris around the potential joint space. However, mechanical loading of cemented implants with the differing elastic moduli of metal stems, polymethylmethacrylate (PMMA) cement and bone can result in relative micromotion, implying the potential for production of metal and PMMA particles from the stem-cement interface by fretting wear. In order to investigate the production and biological reactivity of debris from this interface, PMMA and metal particulate debris was produced by sliding wear of PMMA pins containing barium sulphate and zirconium dioxide against a Vaquasheened stainless steel counterface. This debris was characterised by SEM, energy-dispersive analysis by X-ray (EDAX) and image analysis, then added to cell cultures of a human monocytic cell line, U937, and stimulation of pro-osteolytic cytokines measured by ELISA. Large quantities of PMMA cement debris were generated by the sliding wear of PMMA pins against Vaquasheened stainless steel plates in the method developed for this study. Both cements stimulated the release of pro-osteolytic TNFα from the U937 monocytic cell line, in a dose-dependent fashion. There was a trend towards greater TNFα release with Palacos cement than CMW cement at the same dose. Palacos particles also caused significant release of IL-6, another pro-osteolytic cytokine, while CMW did not. The particulate cement debris produced did not stimulate the release of GM-CSF or IL1β from the U937 cells. These results may explain the cytokine pathway responsible for bone resorption caused by particulate PMMA debris. Radio-opaque additives are of value in surgical practice and
Platelet-rich plasma (PRP) is being used increasingly often in the clinical setting to treat tendon-related pathologies. Yet the optimal PRP preparations to promote tendon healing in different patient populations are poorly defined. Here, we sought to determine whether increasing the concentration of platelet-derived proteins within a derivative of PRP, platelet lysate (PL), enhances tenocyte proliferation and migration Concentrated PLs from both young (< 50 years) and aged (> 50 years) donors were prepared by exposing pooled PRP to a series of freeze-thaw cycles followed by dilution in plasma, and the levels of several platelet-derived proteins were measured using multiplex immunoassay technology. Human tenocytes were cultured with PLs to simulate a clinically relevant PRP treatment range, and cell growth and migration were assessed using DNA quantitation and gap closure assays, respectively.Objectives
Methods
Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes. Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Objectives
Methods
The patient-rated wrist evaluation (PRWE) and the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire are patient-reported outcome measures (PROMs) used for clinical and research purposes. Methodological high-quality clinimetric studies that determine the measurement properties of these PROMs when used in patients with a distal radial fracture are lacking. This study aimed to validate the PRWE and DASH in Dutch patients with a displaced distal radial fracture (DRF). The intraclass correlation coefficient (ICC) was used for test-retest reliability, between PROMs completed twice with a two-week interval at six to eight months after DRF. Internal consistency was determined using Cronbach’s α for the dimensions found in the factor analysis. The measurement error was expressed by the smallest detectable change (SDC). A semi-structured interview was conducted between eight and 12 weeks after DRF to assess the content validity.Objectives
Methods