Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 13, Issue 10 | Pages 546 - 558
4 Oct 2024
Li Y Wuermanbieke S Wang F Mu W Ji B Guo X Zou C Chen Y Zhang X Cao L

Aims

The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty.

Methods

A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated.


Aims

Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model.

Methods

Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation.


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims

Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA.

Methods

For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed.


Bone & Joint Research
Vol. 9, Issue 2 | Pages 49 - 59
1 Feb 2020
Yu K Song L Kang HP Kwon H Back J Lee FY

Aims

To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant Staphylococcus aureus (MRSA) and the antibiotic and detergent susceptibility of MRSA in bone.

Methods

Time-lapse confocal microscopy was used to analyze the interaction of MRSA strain USA300 with primary murine osteoblasts and osteoclasts. The effects of early and delayed antibiotic treatments on intracellular and extracellular bacterial colony formation and cell death were quantified. We tested the effects of cefazolin, gentamicin, vancomycin, tetracycline, rifampicin, and ampicillin, as well as agents used in surgical preparation and irrigation.