The Oswestry-Bristol Classification (OBC) is an MRI-specific assessment tool to grade trochlear dysplasia. The aim of this study is to validate clinically the OBC by demonstrating its use in selecting treatments that are safe and effective. The OBC and the patellotrochlear index were used as part of the Oswestry Patellotrochlear Algorithm (OPTA) to guide the surgical treatment of patients with patellar instability. Patients were assigned to one of four treatment groups: medial patellofemoral ligament reconstruction (MPFLr); MPFLr + tibial tubercle distalization (TTD); trochleoplasty; or trochleoplasty + TTD. A prospective analysis of a longitudinal patellofemoral database was performed. Between 2012 and 2018, 202 patients (233 knees) with a mean age of 24.2 years (SD 8.1), with recurrent patellar instability were treated by two fellowship-trained consultant sports/knee surgeons at The Robert Jones and Agnes Hunt Orthopaedic Hospital. Clinical efficacy of each treatment group was assessed by Kujala, International Knee Documentation Committee (IKDC), and EuroQol five-dimension questionnaire (EQ-5D) scores at baseline, and up to 60 months postoperatively. Their safety was assessed by complication rate and requirement for further surgery. The pattern of clinical outcome over time was analyzed using mixed regression modelling.Aims
Methods
This review considers the surgical treatment
of displaced fractures involving the knee in elderly, osteoporotic patients.
The goals of treatment include pain control, early mobilisation,
avoidance of complications and minimising the need for further surgery.
Open reduction and internal fixation (ORIF) frequently results in
loss of reduction, which can result in post-traumatic arthritis
and the occasional conversion to total knee replacement (TKR). TKR
after failed internal fixation is challenging, with modest functional
outcomes and high complication rates. TKR undertaken as treatment
of the initial fracture has better results to late TKR, but does
not match the outcome of primary TKR without complications. Given
the relatively infrequent need for late TKR following failed fixation,
ORIF is the preferred management for most cases. Early TKR can be
considered for those patients with pre-existing arthritis, bicondylar
femoral fractures, those who would be unable to comply with weight-bearing restrictions,
or where a single definitive procedure is required.
We analysed the serum C-reactive protein level, synovial fluid obtained by joint aspiration and five synovial biopsies from 145 knee replacements prior to revision to assess the value of these parameters in diagnosing late peri-prosthetic infection. Five further synovial biopsies were used for histological analysis. Samples were also obtained during the revision and incubated and analysed in an identical manner for 14 days. A total of 40 total knee replacements were found to be infected (prevalence 27.6%). The aspiration technique had a sensitivity of 72.5% (95% confidence interval (CI) 58.7 to 86.3), a specificity of 95.2% (95% CI 91.2 to 99.2), a positive predictive value of 85.3% (95% CI 73.4 to 100), a negative predictive value of 90.1% (95% CI 84.5 to 95.7) and an accuracy of 89%. The biopsy technique had a sensitivity of 100%, a specificity of 98.1% (95% CI 95.5 to 100), a positive predictive value of 95.2% (95% CI 88.8 to 100), a negative predictive value of 100% and an accuracy of 98.6%. C-reactive protein with a cut-off-point of 13.5 mg/l had a sensitivity of 72.5% (95% CI 58.7 to 86.3), a specificity of 80.9% (95% CI 73.4 to 88.4), a positive predictive value of 59.2% (95% CI 45.4 to 73.0), a negative predictive value of 88.5% (95% 81.0 to 96.0 CI) and an accuracy of 78.1%. We found that biopsy was superior to joint aspiration and C-reactive protein in the diagnosis of late peri-prosthetic infection of total knee replacements.