Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 911 - 914
1 Aug 2022
Prijs J Liao Z Ashkani-Esfahani S Olczak J Gordon M Jayakumar P Jutte PC Jaarsma RL IJpma FFA Doornberg JN

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’). Cite this article: Bone Joint J 2022;104-B(8):911–914


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


Bone & Joint Open
Vol. 3, Issue 1 | Pages 93 - 97
10 Jan 2022
Kunze KN Orr M Krebs V Bhandari M Piuzzi NS

Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1754 - 1758
1 Dec 2021
Farrow L Zhong M Ashcroft GP Anderson L Meek RMD

There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines.

Cite this article: Bone Joint J 2021;103-B(12):1754–1758.


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1476 - 1478
1 Dec 2019
Bayliss L Jones LD

This annotation briefly reviews the history of artificial intelligence and machine learning in health care and orthopaedics, and considers the role it will have in the future, particularly with reference to statistical analyses involving large datasets.

Cite this article: Bone Joint J 2019;101-B:1476–1478


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1338 - 1343
1 Oct 2010
Kelly JC Glynn RW O’Briain DE Felle P McCabe JP

The credibility and creativity of an author may be gauged by the number of scientific papers he or she has published, as well as the frequency of citations of a particular paper reflecting the impact of the data on the area of practice. The object of this study was to identify and analyse the qualities of the top 100 cited papers in orthopaedic surgery. The database of the Science Citation Index of the Institute for Scientific Information (1945 to 2008) was used. A total of 1490 papers were cited more than 100 times, with the top 100 being subjected to further analysis. The majority originated in the United States, followed by the United Kingdom. The top 100 papers were published in seven specific orthopaedic journals.

Analysis of the most-cited orthopaedic papers allows us a unique insight into the qualitites, characteristics and clinical innovations required for a paper to attain ‘classic’ status.