The sternoclavicular joint (SCJ) is a pivotal
articulation in the linked system of the upper limb girdle, providing
load-bearing in compression while resisting displacement in tension
or distraction at the manubrium sterni. The SCJ and acromioclavicular
joint (ACJ) both have a small surface area of contact protected
by an intra-articular fibrocartilaginous disc and are supported
by strong extrinsic and intrinsic capsular ligaments. The function
of load-sharing in the upper limb by bulky periscapular and thoracobrachial
muscles is extremely important to the longevity of both joints.
Ligamentous and capsular laxity changes with age, exposing both
joints to greater strain, which may explain the rising incidence
of arthritis in both with age. The incidence of arthritis in the
SCJ is less than that in the ACJ, suggesting that the extrinsic
ligaments of the SCJ provide greater stability than the coracoclavicular
ligaments of the ACJ. Instability of the SCJ is rare and can be difficult to distinguish
from medial clavicular physeal or metaphyseal fracture-separation:
cross-sectional imaging is often required. The distinction is important
because the treatment options and outcomes of treatment are dissimilar,
whereas the treatment and outcomes of ACJ separation and fracture
of the lateral clavicle can be similar. Proper recognition and treatment
of traumatic instability is vital as these injuries may be life-threatening.
Instability of the SCJ does not always require surgical intervention.
An accurate diagnosis is required before surgery can be considered,
and we recommend the use of the Stanmore instability triangle. Most
poor outcomes result from a failure to recognise the underlying
pathology. There is a natural reluctance for orthopaedic surgeons to operate
in this area owing to unfamiliarity with, and the close proximity
of, the related vascular structures, but the interposed sternohyoid
and sternothyroid muscles are rarely injured and provide a clear
boundary to the medial retroclavicular space, as well as an anatomical
barrier to unsafe intervention. This review presents current concepts of instability of the SCJ,
describes the relevant surgical anatomy, provides a framework for
diagnosis and management, including physiotherapy, and discusses
the technical challenges of operative intervention. Cite this article:
There are no long-term published results on the survival of a third-generation cemented total shoulder replacement. We describe a clinical and radiological study of the Aequalis total shoulder replacement for a minimum of ten years. Between September 1996 and May 1998, 39 consecutive patients underwent a primary cemented total shoulder replacement using this prosthesis. Data were collected prospectively on all patients each year, for a minimum of ten years, or until death or failure of the prosthesis. At a follow-up of at least ten years, 12 patients had died with the prosthesis intact and two had emigrated, leaving 25 available for clinical review. Of these, 13 had rheumatoid arthritis and 12 osteoarthritis. One refused radiological review leaving 24 with fresh radiographs. Survivorship at ten years was 100% for the humeral component and 92% for the glenoid component. The incidence of lucent lines was low. No humeral component was thought to be at risk and only two glenoid components. The osteoarthritic group gained a mean 65° in forward flexion and their Constant score improved by a mean 41.4 points (13 to 55). The rheumatoid group gained a mean of 24° in flexion and their Constant score improved by 29.4 points. This difference may have been due to failure of the rotator cuff in 75% of the patients with rheumatoid arthritis. Thus a third-generation total shoulder replacement gives an excellent result in patients with osteoarthritis and an intact rotator cuff. Patients with rheumatoid arthritis have a 75% risk of failure of the rotator cuff at ten years.
Between 1976 and 2004, 38 revision arthroplasties (35 patients) were performed for aseptic loosening of the humeral component. The mean interval from primary arthroplasty to revision was 7.1 years (0.4 to 16.6). A total of 35 shoulders (32 patients) were available for review at a mean follow-up of seven years (2 to 19.3). Pre-operatively, 34 patients (97%) had moderate or severe pain; at final follow-up, 29 (83%) had no or only mild pain (p <
0.0001). The mean active abduction improved from 88° to 107° (p <
0.01); and the mean external rotation from 37° to 46° (p = 0.27). Excellent or satisfactory results were achieved in 25 patients (71%) according to the modified Neer rating system. Humeral components were cemented in 29, with ingrowth implants used in nine cases. There were 19 of standard length and 17 were longer (two were custom replacements and are not included). Bone grafting was required for defects in 11 humeri. Only two glenoid components were left unrevised. Intra-operative complications included cement extrusion in eight cases, fracture of the shaft of the humerus is two and of the tuberosity in four. There were four re-operations, one for recurrent humeral loosening, with 89% survival free of re-operations at ten years. Revision surgery for aseptic loosening of the humeral component provides reliable pain relief and modest improvement of movement, although there is a substantial risk of intra-operative complications. Revision to a total shoulder replacement gives better results than to a hemiarthroplasty.
We retrospectively identified 18 consecutive patients with synovial chrondromatosis of the shoulder who had arthroscopic treatment between 1989 and 2004. Of these, 15 were available for review at a mean follow-up of 5.3 years (2.3 to 16.5). There were seven patients with primary synovial chondromatosis, but for the remainder, the condition was a result of secondary causes. The mean Constant score showed that pain and activities of daily living were the most affected categories, being only 57% and 65% of the values of the normal side. Surgery resulted in a significant improvement in the mean Constant score in these domains from 8.9 (4 to 15) to 11.3 (2 to 15) and from 12.9 (5 to 20) to 18.7 (11 to 20), respectively (unpaired We found that arthroscopic debridement of the glenohumeral joint and open debridement and tenodesis of the long head of biceps, when indicated, are safe and effective in relieving symptoms at medium-term review.