Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.Aims
Methods
Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests.Aims
Methods
Aims. Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool. Methods. A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias. Results. A total of 40 studies reported on
The aim of this study was to perform a systematic review of the evidence for the use of intraoperative cell salvage in patients undergoing revision hip arthroplasty, and specifically to analyze the available data in order to quantify any associated reduction in the use of allogenic blood transfusion, and the volume which is used. An electronic search of MEDLINE (PubMed), Embase, Scopus, and the Cochrane Library was completed from the date of their inception to 24 February 2022, using a search strategy and protocol created in conjunction with the PRISMA statement. Inclusion criteria were patients aged > 18 years who underwent revision hip arthroplasty when cell salvage was used. Studies in which pre-donated red blood cells were used were excluded. A meta-analysis was also performed using a random effects model with significance set at p = 0.05.Aims
Methods
As an increasing number of female surgeons are choosing orthopaedics, it is important to recognize the impact of pregnancy within this cohort. The aim of this review was to examine common themes and data surrounding pregnancy, parenthood, and fertility within orthopaedics. A systematic review was conducted by searching Medline, Emcare, Embase, PsycINFO, OrthoSearch, and the Cochrane Library in November 2022. The Preferred Reporting Items for Systematic Reviews and Meta Analysis were adhered to. Original research papers that focused on pregnancy and/or parenthood within orthopaedic surgery were included for review.Aims
Methods
The aim of this study was to determine the effectiveness of home-based prehabilitation on pre- and postoperative outcomes in participants awaiting total knee (TKA) and hip arthroplasty (THA). A systematic review with meta-analysis of randomized controlled trials (RCTs) of prehabilitation interventions for TKA and THA. MEDLINE, CINAHL, ProQuest, PubMed, Cochrane Library, and Google Scholar databases were searched from inception to October 2022. Evidence was assessed by the PEDro scale and the Cochrane risk-of-bias (ROB2) tool.Aims
Methods
The ‘pink, pulseless hand’ is often used to describe the clinical situation in which a child with a supracondylar fracture of the humerus has normal distal perfusion in the absence of a palpable peripheral pulse. The management guidelines are based on the assessment of perfusion, which is difficult to undertake and poorly evaluated objectively. The aim of this study was to review the available literature in order to explore the techniques available for the preoperative clinical assessment of perfusion in these patients and to evaluate the clinical implications. A systematic literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and registered prospectively with the International Prospective Register of Systematic Reviews. Databases were explored in June 2022 with the search terms (pulseless OR dysvascular OR ischaemic OR perfused OR vascular injury) AND supracondylar AND (fracture OR fractures).Aims
Methods
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
Aims. Evidence exists of a consistent decline in the value and time that medical schools place upon their undergraduate orthopaedic placements. This limited exposure to trauma and orthopaedics (T&O) during medical school will be the only experience in the speciality for the majority of doctors. This review aims to provide an overview of undergraduate orthopaedic
This study evaluates the quality of patient-reported outcome measures (PROMs) reported in childhood fracture trials and recommends outcome measures to assess and report physical function, functional capacity, and quality of life using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) standards. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic review of OVID Medline, Embase, and Cochrane CENTRAL was performed to identify all PROMs reported in trials. A search of OVID Medline, Embase, and PsycINFO was performed to identify all PROMs with validation studies in childhood fractures. Development studies were identified through hand-searching. Data extraction was undertaken by two reviewers. Study quality and risk of bias was evaluated by COSMIN guidelines and recorded on standardized checklists.Aims
Methods
Gender bias and sexual discrimination (GBSD) have been widely recognized across a range of fields and are now part of the wider social consciousness. Such conduct can occur in the medical workplace, with detrimental effects on recipients. The aim of this review was to identify the prevalence and impact of GBSD in orthopaedic surgery, and to investigate interventions countering such behaviours. A systematic review was conducted by searching Medline, EMCARE, CINAHL, PsycINFO, and the Cochrane Library Database in April 2020, and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to which we adhered. Original research papers pertaining to the prevalence and impact of GBSD, or mitigating strategies, within orthopaedics were included for review.Aims
Methods
To analyze outcomes reported in studies of Ponseti correction of idiopathic clubfoot. A systematic review of the literature was performed to identify a list of outcomes and outcome tools reported in the literature. A total of 865 studies were screened following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and 124 trials were included in the analysis. Data extraction was completed by two researchers for each trial. Each outcome tool was assigned to one of the five core areas defined by the Outcome Measures Recommended for use in Randomized Clinical Trials (OMERACT). Bias assessment was not deemed necessary for the purpose of this paper.Aims
Methods
To systematically review the outcomes and complications of cosmetic stature lengthening. PubMed and Embase were searched on 10 November 2019 by three reviewers independently, and all relevant studies in English published up to that date were considered based on predetermined inclusion/exclusion criteria. The search was done using “cosmetic lengthening” and “stature lengthening” as key terms. The Preferred Reporting Item for Systematic Reviews and Meta-Analyses statement was used to screen the articles.Aims
Methods
The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported. Cite this article: