Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Bone & Joint Research
Vol. 13, Issue 11 | Pages 682 - 693
26 Nov 2024
Wahl P Heuberger R Pascucci A Imwinkelried T Fürstner M Icken N Schläppi M Pourzal R Gautier E

Aims. Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands. Methods. Polyethylene acetabular cups/liners were collected at one centre from 1 April 2021 to 30 April 2022. The trans-vinylene index (TVI) and oxidation index (OI) were determined by Fourier-transform infrared spectrometry. Wear was measured using a pin-on-disk test. Results. A total of 47 specimens from ten brands were included. The TVI was independent of time in vivo. A linear correlation (R. 2. = 0.995) was observed between the old and current TVI standards, except for vitamin E-containing polyethylene. The absorbed irradiation dose calculated from the TVI corresponded to product specifications for all but two products. For one electron beam-irradiated HXLPE, a mean dose of 241% (SD 18%) of specifications was determined. For another, gamma-irradiated HXLPE, a mean 41% (SD 13%) of specifications was determined. Lower wear was observed for higher TVI. Conclusion. The TVI is a reliable measure of the absorbed irradiation dose and does not alter over time in vivo. The products of various brands differ by manufacturing details and consequently cross-linking characteristics. Absorption and penetration of electron radiation and gamma radiation differ, potentially leading to higher degrees of cross-linking for electron radiation. There is a non-linear, inverse correlation between TVI and in vitro wear. The wear resistance of the HXLPE with low TVI was reduced and more comparable to CPE. Cite this article: Bone Joint Res 2024;13(11):682–693


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims. Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. Methods. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems. Results. There was substantial agreement in grading among all three observers with uncleaned (n = 465) and with the subset of cleaned (n = 85) implants. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. Cleaning changed the average scores marginally using the Goldberg criteria (p = 0.290); however, using the VGS, approximately 40% of the scores for all observers changed, increasing the average score from 4.24 to 4.35 (p = 0.002). There was a strong correlation between measured material loss and new grading scores. Conclusion. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. This system provides potential advantages for assessing taper damage without requiring specialized imaging devices. Cite this article: Bone Joint Res 2023;12(3):155–164


Bone & Joint Research
Vol. 10, Issue 6 | Pages 340 - 347
1 Jun 2021
Jenkinson MRJ Meek RMD Tate R MacMillan S Grant MH Currie S

Elevated levels of circulating cobalt ions have been linked with a wide range of systemic complications including neurological, endocrine, and cardiovascular symptoms. Case reports of patients with elevated blood cobalt ions have described significant cardiovascular complications including cardiomyopathy. However, correlation between the actual level of circulating cobalt and extent of cardiovascular injury has not previously been performed. This review examines evidence from the literature for a link between elevated blood cobalt levels secondary to metal-on-metal (MoM) hip arthroplasties and cardiomyopathy. Correlation between low, moderate, and high blood cobalt with cardiovascular complications has been considered. Elevated blood cobalt at levels over 250 µg/l have been shown to be a risk factor for developing systemic complications and published case reports document cardiomyopathy, cardiac transplantation, and death in patients with severely elevated blood cobalt ions. However, it is not clear that there is a hard cut-off value and cardiac dysfunction may occur at lower levels. Clinical and laboratory research has found conflicting evidence of cobalt-induced cardiomyopathy in patients with MoM hips. Further work needs to be done to clarify the link between severely elevated blood cobalt ions and cardiomyopathy.

Cite this article: Bone Joint Res 2021;10(6):340–347.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 402 - 411
1 Aug 2020
Sanghani-Kerai A Coathup M Brown R Lodge G Osagie-Clouard L Graney I Skinner J Gikas P Blunn G

Aims

For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient’s own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel.

Methods

The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 333 - 341
1 Jul 2019
Grossner TL Haberkorn U Gotterbarm T

Objectives

Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote in vivo bone formation. One of the main problems of scaffold-based osteogenic cell cultures is the difficulty in quantifying the amount of newly produced extracellular mineral deposition, as a marker for new bone formation, without destroying the scaffold. In recent studies, we were able to show that 99mTc-methylene diphosphonate (99mTc-MDP), a gamma radiation-emitting radionuclide, can successfully be applied as a reliable quantitative marker for mineral deposition as this tracer binds with high affinity to newly produced hydroxyapatite (HA).

Methods

Within the present study, we evaluated whether this promising new method, using 99mTc-hydroxydiphosphonate (99mTc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with 99mTc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured.