Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 513 - 524
19 Sep 2024
Kalsoum R Minns Lowe CJ Gilbert S McCaskie AW Snow M Wright K Bruce G Mason DJ Watt FE

Aims. To explore key stakeholder views around feasibility and acceptability of trials seeking to prevent post-traumatic osteoarthritis (PTOA) following knee injury, and provide guidance for next steps in PTOA trial design. Methods. Healthcare professionals, clinicians, and/or researchers (HCP/Rs) were surveyed, and the data were presented at a congress workshop. A second and related survey was then developed for people with joint damage caused by knee injury and/or osteoarthritis (PJDs), who were approached by a UK Charity newsletter or Oxford involvement registry. Anonymized data were collected and analyzed in Qualtrics. Results. Survey responses (n = 19 HCP/Rs, 39 PJDs) supported studies testing pharmacological agents preventing PTOA. All HCP/Rs and 30/31 (97%) PJDs supported the development of new treatments that improved or delayed knee symptoms and damage to knee structure. PJDs thought that improving structural knee damage was more important than knee symptoms. Both groups found studies more acceptable as expected future benefit and risk of PTOA increased. All drug delivery routes were acceptable. Workshop participants (around n = 60) reflected survey views. Discussions suggested that stratifying using molecular testing for likely drug response appeared to be more acceptable than using characteristics such as sex, age, and BMI. Conclusion. Our findings supported PTOA drug intervention studies, including situations where there is low risk of disease, no expected benefit of treatment, and frequent treatment administration. PJDs appeared less risk-averse than HCP/Rs. This work reinforces the benefits of consensus and involvement work in the co-creation of PTOA drug trial design. Involvement of key stakeholders, such as PJDs with different risks of OA and regulatory representatives, are critical for trial design success. Cite this article: Bone Joint Res 2024;13(9):513–524


Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims

cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect.

Methods

CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


Bone & Joint Research
Vol. 11, Issue 9 | Pages 652 - 668
7 Sep 2022
Lv G Wang B Li L Li Y Li X He H Kuang L

Aims

Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages.

Methods

Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 214 - 225
20 Apr 2022
Hao X Zhang J Shang X Sun K Zhou J Liu J Chi R Xu T

Aims. Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive. Methods. A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed. Results. Eight-week treadmill-walking was effective at maintaining the integrity of cartilage-subchondral bone unit and reducing the elevated systematic inflammation factors and microbiome-derived metabolites. Furthermore, 16S ribosomal ribonucleic acid (rRNA) sequencing showed disease-relevant microbial shifts in PTOA animals, characterized by the decreased abundance of phylum TM7 and the increase of phylum Fusobacteria. At the genus level, the abundance of Lactobacillus, Turicibacter, Adlercreutzia, and Cetobacterium were increased in the PTOA animals, while the increase of Adlercreutzia and Cetobacterium was weakened as a response to exercise. The correlation analysis showed that genus Lactobacillus and Adlercreutzia were correlated to the structural OA phenotypes, while phylum Fusobacteria and genus Cetobacterium may contribute to the effects of exercise on the diminishment of serological inflammatory factors. Conclusion. Exercise is effective at maintaining the integrity of cartilage-subchondral bone unit, and the exercise-induced modification of disease-relevant microbial shifts is potentially involved in the mechanisms of exercise-induced amelioration of PTOA. Cite this article: Bone Joint Res 2022;11(4):214–225


Bone & Joint Research
Vol. 10, Issue 8 | Pages 548 - 557
25 Aug 2021
Tao Z Zhou Y Zeng B Yang X Su M

Aims

MicroRNA-183 (miR-183) is known to play important roles in osteoarthritis (OA) pain. The aims of this study were to explore the specific functions of miR-183 in OA pain and to investigate the underlying mechanisms.

Methods

Clinical samples were collected from patients with OA, and a mouse model of OA pain was constructed by surgically induced destabilization of the medial meniscus (DMM). Reverse transcription quantitative polymerase chain reaction was employed to measure the expression of miR-183, transforming growth factor α (TGFα), C-C motif chemokine ligand 2 (CCL2), proinflammatory cytokines (interleukin (IL)-6, IL-1β, and tumour necrosis factor-α (TNF-α)), and pain-related factors (transient receptor potential vanilloid subtype-1 (TRPV1), voltage-gated sodium 1.3, 1.7, and 1.8 (Nav1.3, Nav1.7, and Nav1.8)). Expression of miR-183 in the dorsal root ganglia (DRG) of mice was evaluated by in situ hybridization. TGFα, CCL2, and C-C chemokine receptor type 2 (CCR2) levels were examined by immunoblot analysis and interaction between miR-183 and TGFα, determined by luciferase reporter assay. The extent of pain in mice was measured using a behavioural assay, and OA severity assessed by Safranin O and Fast Green staining. Immunofluorescent staining was conducted to examine the infiltration of macrophages in mouse DRG.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 731 - 741
28 Oct 2020
He Z Nie P Lu J Ling Y Guo J Zhang B Hu J Liao J Gu J Dai B Feng Z

Aims. Osteoarthritis (OA) is a disabling joint disorder and mechanical loading is an important pathogenesis. This study aims to investigate the benefits of less mechanical loading created by intermittent tail suspension for knee OA. Methods. A post-traumatic OA model was established in 20 rats (12 weeks old, male). Ten rats were treated with less mechanical loading through intermittent tail suspension, while another ten rats were treated with normal mechanical loading. Cartilage damage was determined by gross appearance, Safranin O/Fast Green staining, and immunohistochemistry examinations. Subchondral bone changes were analyzed by micro-CT and tartrate-resistant acid phosphatase (TRAP) staining, and serum inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). Results. Our radiographs showed that joint space was significantly enlarged in rats with less mechanical loading. Moreover, cartilage destruction was attenuated in the less mechanical loading group with lower histological damage scores, and lower expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5, matrix metalloproteinase (MMP)-3, and MMP-13. In addition, subchondral bone abnormal changes were ameliorated in OA rats with less mechanical loading, as reduced bone mineral density (BMD), bone volume/tissue volume (BV/TV), and number of osteophytes and osteoclasts in the subchondral bone were observed. Finally, the level of serum inflammatory cytokines was significantly downregulated in the less mechanical loading group compared with the normal mechanical loading group, as well as the expression of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), caspase-1, and interleukin 1β (IL-1β) in the cartilage. Conclusion. Less mechanical loading alleviates cartilage destruction, subchondral bone changes, and secondary inflammation in OA joints. This study provides fundamental insights into the benefit of non-weight loading rest for patients with OA. Cite this article: Bone Joint Res 2020;9(10):731–741


Bone & Joint Research
Vol. 9, Issue 9 | Pages 623 - 632
5 Sep 2020
Jayadev C Hulley P Swales C Snelling S Collins G Taylor P Price A

Aims

The lack of disease-modifying treatments for osteoarthritis (OA) is linked to a shortage of suitable biomarkers. This study combines multi-molecule synovial fluid analysis with machine learning to produce an accurate diagnostic biomarker model for end-stage knee OA (esOA).

Methods

Synovial fluid (SF) from patients with esOA, non-OA knee injury, and inflammatory knee arthritis were analyzed for 35 potential markers using immunoassays. Partial least square discriminant analysis (PLS-DA) was used to derive a biomarker model for cohort classification. The ability of the biomarker model to diagnose esOA was validated by identical wide-spectrum SF analysis of a test cohort of ten patients with esOA.