Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1118 - 1124
1 Oct 2024
Long Y Zheng Z Li X Cui D Deng X Guo J Yang R

Aims. The aims of this study were to validate the minimal clinically important difference (MCID) and patient-acceptable symptom state (PASS) thresholds for Western Ontario Shoulder Instability Index (WOSI), Rowe score, American Shoulder and Elbow Surgeons (ASES), and visual analogue scale (VAS) scores following arthroscopic Bankart repair, and to identify preoperative threshold values of these scores that could predict the achievement of MCID and PASS. Methods. A retrospective review was conducted on 131 consecutive patients with anterior shoulder instability who underwent arthroscopic Bankart repair between January 2020 and January 2023. Inclusion criteria required at least one episode of shoulder instability and a minimum follow-up period of 12 months. Preoperative and one-year postoperative scores were assessed. MCID and PASS were estimated using distribution-based and anchor-based methods, respectively. Receiver operating characteristic curve analysis determined preoperative patient-reported outcome measure thresholds predictive of achieving MCID and PASS. Results. MCID thresholds were determined as 169.6, 6.8, 7.2, and 1.1 for WOSI, Rowe, ASES, and VAS, respectively. PASS thresholds were calculated as ≤ 480, ≥ 80, ≥ 87, and ≤ 1 for WOSI, Rowe, ASES, and VAS, respectively. Preoperative thresholds of ≥ 760 (WOSI) and ≤ 50 (Rowe) predicted achieving MCID for WOSI score (p < 0.001). Preoperative thresholds of ≤ 60 (ASES) and ≥ 2 (VAS) predicted achieving MCID for VAS score (p < 0.001). A preoperative threshold of ≥ 40 (Rowe) predicted achieving PASS for Rowe score (p = 0.005). Preoperative thresholds of ≥ 50 (ASES; p = 0.002) and ≤ 2 (VAS; p < 0.001) predicted achieving PASS for the ASES score. Preoperative thresholds of ≥ 43 (ASES; p = 0.046) and ≤ 4 (VAS; p = 0.024) predicted achieving PASS for the VAS. Conclusion. This study defined MCID and PASS values for WOSI, Rowe, ASES, and VAS scores in patients undergoing arthroscopic Bankart repair. Higher preoperative functional scores may reduce the likelihood of achieving MCID but increase the likelihood of achieving the PASS. These findings provide valuable guidance for surgeons to counsel patients realistically regarding their expectations. Cite this article: Bone Joint J 2024;106-B(10):1118–1124


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 668 - 678
1 Jun 2023
Friedman RJ Boettcher ML Grey S Flurin P Wright TW Zuckerman JD Eichinger JK Roche C

Aims

The aim of this study was to longitudinally compare the clinical and radiological outcomes of anatomical total shoulder arthroplasty (aTSA) up to long-term follow-up, when using cemented keel, cemented peg, and hybrid cage peg glenoid components and the same humeral system.

Methods

We retrospectively analyzed a multicentre, international clinical database of a single platform shoulder system to compare the short-, mid-, and long-term clinical outcomes associated with three designs of aTSA glenoid components: 294 cemented keel, 527 cemented peg, and 981 hybrid cage glenoids. Outcomes were evaluated at 4,746 postoperative timepoints for 1,802 primary aTSA, with a mean follow-up of 65 months (24 to 217).


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 394 - 400
1 Mar 2022
Lee KJ Kim YT Choi M Kim SH

Aims. The aim of this study was to compare the characteristics and outcomes of L-shaped and reverse L-shaped rotator cuff tears. Methods. A total of 82 shoulders (81 patients) after arthroscopic rotator cuff repair were retrospectively enrolled. The mean age of the patients was 62 years (SD 6), 33 shoulders (40.2%) were in male patients, and 57 shoulders (69.5%) were the right shoulder. Of these, 36 shoulders had an L-shaped tear (group L) and 46 had a reverse L-shaped tear (group RL). Both groups were compared regarding characteristics, pre- and postoperative pain, and functional outcomes. Muscle status was assessed by preoperative MRI, and re-tear rates by postoperative ultrasonography or MRI. Results. Patients in group RL were significantly older than in group L (p = 0.008), and group RL was significantly associated with female sex (odds ratio 2.5 (95% confidence interval 1.03 to 6.32); p = 0.041). Mean postoperative pain visual analogue scale (VAS) score was significantly greater (group L = 0.8 (SD 1.5), group RL = 1.7 (SD 2.2); p = 0.033) and mean postoperative American Shoulder and Elbow Surgeons (ASES) score was significantly lower in group RL than group L (group L = 91.4 (SD 13.1), group RL = 83.8 (SD 17.9); p = 0.028). However, postoperative mean VAS for pain and ASES score were not lower than the patient-acceptable symptom state scores. Mean retracted tear length was significantly larger in group L (group L = 24.6 mm (SD 6.5), group RL = 20.0 mm (SD 6.8); p = 0.003). Overall re-tear rate for 82 tears was 11.0% (nine shoulders), and re-tear rates in group L and RL were similar at 11.1% (four shoulders) and 10.9% (five shoulders), respectively (p = 1.000). No significant intergroup difference was found for fatty degeneration (FD) or muscle atrophy. Within group L, postoperative FD grades of supraspinatus and subscapularis worsened significantly (p = 0.034 and p = 0.008, respectively). Mean postoperative pain VAS (male = 1.2 (SD 1.8), female = 1.3 (SD 2.0)) and ASES scores (male = 88.7 (SD 15.5), female = 86.0 (SD 16.8)) were similar in male and female patients (p = 0.700 and p = 0.475, respectively). Regression analysis showed age was not a prognostic factor of postoperative pain VAS or ASES scores (p = 0.188 and p = 0.150, respectively). Conclusion. Older age and female sex were associated with reverse L-shaped tears. Although the postoperative functional outcomes of patients with reverse L-shaped tears were satisfactory, the clinical scores were poorer than those of patients with L-shaped tears. Surgeons should be aware of the differences in clinical outcome between L-shaped and reverse L-shaped rotator cuff tears. Cite this article: Bone Joint J 2022;104-B(3):394–400