Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 3, Issue 4 | Pages 89 - 94
1 Apr 2014
Cook JL Hung CT Kuroki K Stoker AM Cook CR Pfeiffer FM Sherman SL Stannard JP

Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair.

Cite this article: Bone Joint Res 2014;4:89–94.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 911 - 914
1 Jul 2007
Khan WS Nokes L Jones RK Johnson DS

We describe the influence of the angle of immobilisation during partial weight-bearing on the forces across the extensor mechanism of the knee. Gait analysis was performed on eight healthy male subjects with the right knee in an orthotic brace locked at 0°, 10°, 20° and 30°, with the brace unlocked and also without a brace. The ground reaction force, the angle of the knee and the net external flexion movement about the knee were measured and the extensor mechanism force was calculated. The results showed a direct non-linear relationship between the angle of knee flexion and the extensor mechanism force. When a brace was applied, the lowest forces occurred when the brace was locked at 0°. At 30° the forces approached the failure strength of some fixation devices. We recommend that for potentially unstable injuries of the extensor mechanism, when mobilising with partial weight-bearing, the knee should be flexed at no more than 10°


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 905 - 908
1 Jul 2006
Hetsroni I Finestone A Milgrom C Sira DB Nyska M Radeva-Petrova D Ayalon M

Excessive foot pronation has been considered to be related to anterior knee pain. We undertook a prospective study to test the hypothesis that exertional anterior knee pain is related to the static and dynamic parameters of foot pronation. Two weeks before beginning basic training lasting for 14 weeks, 473 infantry recruits were enrolled into the study and underwent two-dimensional measurement of their subtalar joint displacement angle during walking on a treadmill.

Of the 405 soldiers who finished the training 61 (15%) developed exertional anterior knee pain. No consistent association was found between the incidence of anterior knee pain and any of the parameters of foot pronation. While a statistically significant association was found between anterior knee pain and pronation velocity (left foot, p = 0.05; right foot, p = 0.007), the relationship was contradictory for the right and left foot. Our study does not support the hypothesis that anterior knee pain is related to excessive foot pronation.