Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:

Objectives

This investigation sought to advance the work published in our prior biomechanical study (Journal of Orthopaedic Research, 2016). We specifically sought to determine whether there are additional easy-to-measure parameters on plain radiographs of the proximal humerus that correlate more strongly with ultimate fracture load, and whether a parameter resembling the Dorr strength/quality characterisation of proximal femurs can be applied to humeri.

Materials and Methods

A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio.


The Bone & Joint Journal
Vol. 98-B, Issue 4 | Pages 504 - 511
1 Apr 2016
Ajami S Blunn GW Lambert S Alexander S Foxall Smith M Coathup MJ

Aims

To assess the extent of osteointegration in two designs of shoulder resurfacing implants. Bony integration to the Copeland cylindrical central stem design and the Epoca RH conical-crown design were compared.

Patients and Methods

Implants retrieved from six patients in each group were pair-matched. Mean time to revision surgery of Copeland implants was 37 months (standard deviation (sd) 23; 14 to 72) and Epoca RH 38 months (sd 28; 12 to 84). The mean age of patients investigated was 66 years (sd 4; 59 to 71) and 58 years (sd 17; 31 to 73) in the Copeland and Epoca RH groups respectively. None of these implants were revised for loosening.


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 160 - 165
1 Feb 2016
Farrier AJ C. Sanchez Franco L Shoaib A Gulati V Johnson N Uzoigwe CE Choudhury MZ

The ageing population and an increase in both the incidence and prevalence of cancer pose a healthcare challenge, some of which is borne by the orthopaedic community in the form of osteoporotic fractures and metastatic bone disease. In recent years there has been an increasing understanding of the pathways involved in bone metabolism relevant to osteoporosis and metastases in bone. Newer therapies may aid the management of these problems. One group of drugs, the antibody mediated anti-resorptive therapies (AMARTs) use antibodies to block bone resorption pathways. This review seeks to present a synopsis of the guidelines, pharmacology and potential pathophysiology of AMARTs and other new anti-resorptive drugs.

We evaluate the literature relating to AMARTs and new anti-resorptives with special attention on those approved for use in clinical practice.

Denosumab, a monoclonal antibody against Receptor Activator for Nuclear Factor Kappa-B Ligand. It is the first AMART approved by the National Institute for Health and Clinical Excellence and the US Food and Drug Administration. Other novel anti-resorptives awaiting approval for clinical use include Odanacatib.

Denosumab is indicated for the treatment of osteoporosis and prevention of the complications of bone metastases. Recent evidence suggests, however, that denosumab may have an adverse event profile similar to bisphosphonates, including atypical femoral fractures. It is, therefore, essential that orthopaedic surgeons are conversant with these medications and their safe usage.

Take home message: Denosumab has important orthopaedic indications and has been shown to significantly reduce patient morbidity in osteoporosis and metastatic bone disease.

Cite this article: Bone Joint J 2016;98-B:160–5.