Aims. Traumatic central cord syndrome (CCS) typically follows a
Objectives. Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical
Ankylosing spondylitis (AS) is a progressive
multisystem chronic inflammatory disorder. The hallmark of this pathological
process is a progressive fusion of the zygapophyseal joints and
disc spaces of the axial skeleton, leading to a rigid kyphotic deformity
and positive sagittal balance. The ankylosed spine is unable to
accommodate normal mechanical forces, rendering it brittle and susceptible
to
There are many causes of paraspinal muscle weakness which give rise to the dropped-head syndrome. In the upper cervical spine the central portion of the spinal cord innervates the cervical paraspinal muscles. Dropped-head syndrome resulting from injury to the central spinal cord at this level has not previously been described. We report two patients who were treated acutely for this condition. Both presented with weakness in the upper limbs and paraspinal cervical musculature after a fracture of C2. Despite improvement in the strength of the upper limbs, the paraspinal muscle weakness persisted in both patients. One ultimately underwent cervicothoracic fusion to treat her dropped-head syndrome. While the cause of the dropped-head syndrome cannot be definitively ascribed to the injuries to the spinal cord, this pattern is consistent with the known patho-anatomical mechanisms of both injury to the central spinal cord and dropped-head syndrome.
This study assessed the frequency of acute injury to the spinal cord in Irish Rugby over a period of ten years, between 1995 and 2004. There were 12 such injuries; 11 were cervical and one was thoracic. Ten occurred in adults and two in schoolboys. All were males playing Rugby Union and the mean age at injury was 21.6 years (16 to 36). The most common mechanism of injury was hyperflexion of the cervical spine and the players injured most frequently were playing at full back, hooker or on the wing. Most injuries were sustained during the tackle phase of play. Six players felt their injury was preventable. Eight are permanently disabled as a result of their injury.