Aims. This study investigates the effectiveness and adequacy of the informed consent process for patients undergoing
Assessment of bone health is a multifaceted clinical process, incorporating biochemical and diagnostic tests that should be accurate and reproducible. Dual-energy X-ray absorptiometry (DXA) is the reference standard for evaluation of bone mineral density, but has known limitations. Alternatives include quantitative CT (q-CT), MRI, and peripheral quantitative ultrasound (QUS). Radiofrequency echographic multispectrometry (REMS) is a new generation of ultrasound technology used for the assessment of bone mineral density (BMD) at axial sites that is as accurate as quality-assured DXA scans. It also provides an assessment of the quality of bone architecture. This will be of direct value and significance to orthopaedic surgeons when planning surgical procedures, including fracture fixation and surgery of the hip and spine, since BMD alone is a poor predictor of fracture risk. The various other fixed-site technologies such as high-resolution peripheral q-CT (HR-pQCT) and MRI offer no further significant prognostic advantages in terms of assessing bone structure and BMD to predict fracture risk. QUS was the only widely adopted non-fixed imaging option for bone health assessment, but it is not considered adequately accurate to provide a quantitative assessment of BMD or provide a prediction of fracture risk. In contrast, REMS has a robust evidence base that demonstrates its equivalence to DXA in determining BMD at axial sites. Fracture prediction using REMS, combining the output of fragility information and BMD, has been established as more accurate than when using BMD alone.Aims
Methods
Hand trauma accounts for one in five of emergency department attendances, with a UK incidence of over five million injuries/year and 250,000 operations/year. Surgical site infection (SSI) in hand trauma surgery leads to further interventions, poor outcomes, and prolonged recovery, but has been poorly researched. Antimicrobial sutures have been recognized by both the World Health Organization and the National Institute for Clinical Excellence as potentially effective for reducing SSI. They have never been studied in hand trauma surgery: a completely different patient group and clinical pathway to previous randomized clinical trials (RCTs) of these sutures. Antimicrobial sutures are expensive, and further research in hand trauma is warranted before they become standard of care. The aim of this protocol is to conduct a feasibility study of antimicrobial sutures in patients undergoing hand trauma surgery to establish acceptability, compliance, and retention for a definitive trial. A two-arm, multicentre feasibility RCT of 116 adult participants with hand and wrist injuries, randomized to either antimicrobial sutures or standard sutures. Study participants and outcome assessors will be blinded to treatment allocation. Outcome measures will be recorded at baseline (preoperatively), 30 days, 90 days, and six months, and will include SSI, patient-reported outcome measures, and return to work.Aims
Methods