Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


Bone & Joint Research
Vol. 2, Issue 11 | Pages 245 - 247
1 Nov 2013
Sprowson AP Rankin KS McNamara I Costa ML Rangan A

The peer review process for the evaluation of manuscripts for publication needs to be better understood by the orthopaedic community. Improving the degree of transparency surrounding the review process and educating orthopaedic surgeons on how to improve their manuscripts for submission will help improve both the review procedure and resultant feedback, with an increase in the quality of the subsequent publications. This article seeks to clarify the peer review process and suggest simple ways in which the quality of submissions can be improved to maximise publication success.

Cite this article: Bone Joint Res 2013;2:245–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1249 - 1255
1 Sep 2008
Nishida H Tsuchiya H Tomita K

We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine osteosarcoma (LM8) model. The tumours were randomised to treatment by excision alone or by cryotreatment after excision. Tissue from the tumour was frozen in liquid nitrogen, thawed in distilled water and then re-implanted in the same animal. In addition, some mice received an immunological response modifier of OK-432 after treatment. We measured the levels of interferon-gamma and interleukin-12 cytokines and the cytotoxicity activity of splenocytes against murine LM8 osteosarcoma cells. The number of lung and the size of abdominal metastases were also measured.

Re-implantation of tumour tissue after cryotreatment activated immune responses and inhibited metastatic tumour growth. OK-432 synergistically enhanced the anti-tumour effect. Our results suggest that the treatment of malignant bone tumours by reconstruction using autografts containing tumours which have been treated by liquid nitrogen may be of clinical value.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 701 - 705
1 May 2007
Thiele OC Eckhardt C Linke B Schneider E Lill CA

We investigated several factors which affect the stability of cortical screws in osteoporotic bone using 18 femora from cadavers of women aged between 45 and 96 years (mean 76). We performed bone densitometry to measure the bone mineral density of the cortical and cancellous bone of the shaft and head of the femur, respectively. The thickness and overall bone mass of the cortical layer of the shaft of the femur were measured using a microCT scanner. The force required to pull-out a 3.5 mm titanium cortical bone screw was determined after standardised insertion into specimens of the cortex of the femoral shaft.

A significant correlation was found between the pull-out strength and the overall bone mass of the cortical layer (r2 = 0.867, p < 0.01) and also between its thickness (r2 = 0.826, p < 0.01) and bone mineral density (r2 = 0.861, p < 0.01). There was no statistically significant correlation between the age of the donor and the pull-out force (p = 0.246), the cortical thickness (p = 0.199), the bone mineral density (p = 0.697) or the level of osteoporosis (p = 0.378).

We conclude that the overall bone mass, the thickness and the bone mineral density of the cortical layer, are the main factors which affect the stability of a screw in human female osteoporotic cortical bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1292 - 1297
1 Sep 2005
Lietman SA Inoue N Rafiee B Deitz LW Chao EYS

We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone.

Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group.

These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.