In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.Aims
Methods
This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis.Aims
Methods
Aims. CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary
The aim of the study was to determine if there was a direct correlation between the pain and disability experienced by patients and size of their disc prolapse, measured by the disc’s cross-sectional area on T2 axial MRI scans. Patients were asked to prospectively complete visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores on the day of their MRI scan. All patients with primary disc herniation were included. Exclusion criteria included recurrent disc herniation, cauda equina syndrome, or any other associated spinal pathology. T2 weighted MRI scans were reviewed on picture archiving and communications software. The T2 axial image showing the disc protrusion with the largest cross sectional area was used for measurements. The area of the disc and canal were measured at this level. The size of the disc was measured as a percentage of the cross-sectional area of the spinal canal on the chosen image. The VAS leg pain and ODI scores were each correlated with the size of the disc using the Pearson correlation coefficient (PCC). Intraobserver reliability for MRI measurement was assessed using the interclass correlation coefficient (ICC). We assessed if the position of the disc prolapse (central, lateral recess, or foraminal) altered the symptoms described by the patient. The VAS and ODI scores from central and lateral recess disc prolapses were compared.Aims
Methods
The aim of this study was to determine the differences in spinal imaging characteristics between subjects with or without lumbar developmental spinal stenosis (DSS) in a population-based cohort. This was a radiological analysis of 2,387 participants who underwent L1-S1 MRI. Means and ranges were calculated for age, sex, BMI, and MRI measurements. Anteroposterior (AP) vertebral canal diameters were used to differentiate those with DSS from controls. Other imaging parameters included vertebral body dimensions, spinal canal dimensions, disc degeneration scores, and facet joint orientation. Mann-Whitney U and chi-squared tests were conducted to search for measurement differences between those with DSS and controls. In order to identify possible associations between DSS and MRI parameters, those who were statistically significant in the univariate binary logistic regression were included in a multivariate stepwise logistic regression after adjusting for demographics. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported where appropriate.Aims
Methods
To study the associations of lumbar developmental spinal stenosis (DSS) with low back pain (LBP), radicular leg pain, and disability. This was a cross-sectional study of 2,206 subjects along with L1-S1 axial and sagittal MRI. Clinical and radiological information regarding their demographics, workload, smoking habits, anteroposterior (AP) vertebral canal diameter, spondylolisthesis, and MRI changes were evaluated. Mann-Whitney U tests and chi-squared tests were conducted to search for differences between subjects with and without DSS. Associations of LBP and radicular pain reported within one month (30 days) and one year (365 days) of the MRI, with clinical and radiological information, were also investigated by utilizing univariate and multivariate logistic regressions.Aims
Methods
Many studies have investigated the kinematics of the lumbar spine and the morphological features of the lumbar discs. However, the segment-dependent immediate changes of the lumbar intervertebral space height during flexion-extension motion are still unclear. This study examined the changes of intervertebral space height during flexion-extension motion of lumbar specimens. First, we validated the accuracy and repeatability of a custom-made mechanical loading equipment set-up. Eight lumbar specimens underwent CT scanning in flexion, neural, and extension positions by using the equipment set-up. The changes in the disc height and distance between adjacent two pedicle screw entry points (DASEP) of the posterior approach at different lumbar levels (L3/4, L4/5 and L5/S1) were examined on three-dimensional lumbar models, which were reconstructed from the CT images.Objectives
Methods
This short contribution aims to explain how intervertebral disc ‘degeneration’ differs from normal ageing, and to suggest how mechanical loading and constitutional factors interact to cause disc degeneration and prolapse. We suggest that disagreement on these matters in medico-legal practice often arises from a misunderstanding of the nature of ‘soft-tissue injuries’.
The belief that an intervertebral disc must degenerate
before it can herniate has clinical and medicolegal significance,
but lacks scientific validity. We hypothesised that tissue changes
in herniated discs differ from those in discs that degenerate without
herniation. Tissues were obtained at surgery from 21 herniated discs
and 11 non-herniated discs of similar degeneration as assessed by
the Pfirrmann grade. Thin sections were graded histologically, and
certain features were quantified using immunofluorescence combined
with confocal microscopy and image analysis. Herniated and degenerated
tissues were compared separately for each tissue type: nucleus, inner
annulus and outer annulus. Herniated tissues showed significantly greater proteoglycan loss
(outer annulus), neovascularisation (annulus), innervation (annulus),
cellularity/inflammation (annulus) and expression of matrix-degrading
enzymes (inner annulus) than degenerated discs. No significant differences
were seen in the nucleus tissue from herniated and degenerated discs.
Degenerative changes start in the nucleus, so it seems unlikely
that advanced degeneration caused herniation in 21 of these 32 discs.
On the contrary, specific changes in the annulus can be interpreted
as the consequences of herniation, when disruption allows local
swelling, proteoglycan loss, and the ingrowth of blood vessels,
nerves and inflammatory cells. In conclusion, it should not be assumed that degenerative changes
always precede disc herniation. Cite this article:
No previous studies have examined the physical
characteristics of patients with cauda equina syndrome (CES). We compared
the anthropometric features of patients who developed CES after
a disc prolapse with those who did not but who had symptoms that
required elective surgery. We recorded the age, gender, height,
weight and body mass index (BMI) of 92 consecutive patients who
underwent elective lumbar discectomy and 40 consecutive patients who
underwent discectomy for CES. On univariate analysis, the mean BMI
of the elective discectomy cohort (26.5 kg/m2 (16.6 to
41.7) was very similar to that of the age-matched national mean
(27.6 kg/m2, p = 1.0). However, the mean BMI of the CES
cohort (31.1 kg/m2 (21.0 to 54.9)) was significantly
higher than both that of the elective group (p <
0.001) and the
age-matched national mean (p <
0.001). A similar pattern was
seen with the weight of the groups. Multivariate logistic regression
analysis was performed, adjusted for age, gender, height, weight
and BMI. Increasing BMI and weight were strongly associated with
an increased risk of CES (odds ratio (OR) 1.17, p <
0.001; and
OR 1.06, p <
0.001, respectively). However, increasing height
was linked with a reduced risk of CES (OR 0.9, p <
0.01). The
odds of developing CES were 3.7 times higher (95% confidence interval
(CI) 1.2 to 7.8, p = 0.016) in the overweight and obese (as defined
by the World Health Organization: BMI ≥ 25 kg/m2) than
in those of ideal weight. Those with very large discs (obstructing
>
75% of the spinal canal) had a larger BMI than those with small
discs (obstructing <
25% of the canal; p <
0.01). We therefore
conclude that increasing BMI is associated with CES.
This article reviews the current knowledge of
the intervertebral disc (IVD) and its association with low back
pain (LBP). The normal IVD is a largely avascular and aneural structure
with a high water content, its nutrients mainly diffusing through
the end plates. IVD degeneration occurs when its cells die or become
dysfunctional, notably in an acidic environment. In the process
of degeneration, the IVD becomes dehydrated and vascularised, and
there is an ingrowth of nerves. Although not universally the case,
the altered physiology of the IVD is believed to precede or be associated
with many clinical symptoms or conditions including low back and/or
lower limb pain, paraesthesia, spinal stenosis and disc herniation. New treatment options have been developed in recent years. These
include biological therapies and novel surgical techniques (such
as total disc replacement), although many of these are still in
their experimental phase. Central to developing further methods
of treatment is the need for effective ways in which to assess patients
and measure their outcomes. However, significant difficulties remain
and it is therefore an appropriate time to be further investigating
the scientific basis of and treatment of LBP.
A number of causes have been advanced to explain the destructive discovertebral (Andersson) lesions that occur in ankylosing spondylitis, and various treatments have been proposed, depending on the presumed cause. The purpose of this study was to identify the causes of these lesions by defining their clinical and radiological characteristics. We retrospectively reviewed 622 patients with ankylosing spondylitis. In all, 33 patients (5.3%) had these lesions, affecting 100 spinal segments. Inflammatory lesions were found in 91 segments of 24 patients (3.9%) and traumatic lesions in nine segments of nine patients (1.4%). The inflammatory lesions were associated with recent-onset disease; a low modified Stoke ankylosing spondylitis spine score (mSASSS) due to incomplete bony ankylosis between vertebral bodies; multiple lesions; inflammatory changes on MRI; reversal of the inflammatory changes and central bony ankylosis at follow-up; and a good response to anti-inflammatory drugs. Traumatic lesions were associated with prolonged disease duration; a high mSASSS due to complete bony ankylosis between vertebral bodies; a previous history of trauma; single lesions; nonunion of fractures of the posterior column; acute kyphoscoliotic deformity with the lesion at the apex; instability, and the need for operative treatment due to that instability. It is essential to distinguish between inflammatory and traumatic Andersson lesions, as the former respond to medical treatment whereas the latter require surgery.
We studied 52 patients, each with a lumbosacral transitional vertebra. Using MRI we found that the lumbar discs immediately above the transitional vertebra were significantly more degenerative and those between the transitional vertebrae and the sacrum were significantly less degenerative compared with discs at other levels. We also performed an anatomical study using 70 cadavers. We found that the iliolumbar ligament at the level immediately above the transitional vertebra was thinner and weaker than it was in cadavers without a lumbosacral transitional vertebra. Instability of the vertebral segment above the transitional vertebra because of a weak iliolumbar ligament could lead to subsequent disc degeneration which may occur earlier than at other disc levels. Some stability between the transitional vertebra and the sacrum could be preserved by the formation of either an articulation or by bony union between the vertebra and the sacrum through its transverse process. This may protect the disc from further degeneration in the long term.
Discogenic low back pain is a common cause of disability, but its pathogenesis is poorly understood. We collected 19 specimens of lumbar intervertebral discs from 17 patients with discogenic low back pain during posterior lumbar interbody fusion, 12 from physiologically ageing discs and ten from normal control discs. We investigated the histological features and assessed the immunoreactive activity of neurofilament (NF200) and neuropeptides such as substance P (SP) and vasoactive-intestinal peptide (VIP) in the nerve fibres. The distinct histological characteristic of the painful disc was the formation of a zone of vascularised granulation tissue from the nucleus pulposus to the outer part of the