In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
Aims. CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and
Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured.
Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.Aims
Methods
Inflammatory response plays a pivotal role in the pathophysiological process of intervertebral disc degeneration (IDD). A20 (also known as tumour necrosis factor alpha-induced protein 3 (TNFAIP3)) is a ubiquitin-editing enzyme that restricts nuclear factor-kappa B (NF-κB) signalling. A20 prevents the occurrence of multiple inflammatory diseases. However, the role of A20 in the initiation of IDD has not been elucidated. The aim of the study was to investigate the effect of A20 in senescence of TNF alpha (TNF-α)-induced nucleus pulposus cells (NPCs). Immunohistochemical staining was performed to observe the expression of A20 in normal and degenerated human intervertebral discs. The NPCs were dissected from the tail vertebrae of healthy male Sprague-Dawley rats and were cultured in the incubator. In the experiment, TNF-α was used to mimic the inflammatory environment of IDD. The cell viability and senescence were examined to investigate the effect of A20 on TNF-α-treated NPCs. The expression of messenger RNA (mRNA)-encoding proteins related to matrix macromolecules (collagen II, aggrecan) and senescence markers (p53, p16). Additionally, NF-κB/p65 activity of NPCs was detected within different test compounds.Aims
Methods
We determined the frequency, rate and extent
of development of scoliosis (coronal plane deformity) in wheelchair-dependent
patients with Duchenne muscular dystrophy (DMD) who were not receiving
steroid treatment. We also assessed kyphosis and lordosis (sagittal
plane deformity). The extent of scoliosis was assessed on sitting anteroposterior
(AP) spinal radiographs in 88 consecutive non-ambulatory patients
with DMD. Radiographs were studied from the time the patients became
wheelchair-dependent until the time of spinal fusion, or the latest assessment
if surgery was not undertaken. Progression was estimated using a
longitudinal mixed-model regression analysis to handle repeated
measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in
78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted
longitudinal model revealed that time in a wheelchair was a highly
significant predictor of the magnitude of the curve, independent
of the age of the patient (p <
0.001). Scoliosis developed in
virtually all DMD patients not receiving steroids once they became
wheelchair-dependent, and the degree of deformity deteriorated over
time. In general, scoliosis increased at a constant rate, beginning
at the time of wheelchair-dependency (p <
0.001). In some there
was no scoliosis for as long as three years after dependency, but
scoliosis then developed and increased at a constant rate. Some
patients showed a rapid increase in the rate of progression of the
curve after a few years – the clinical phenomenon of a rapidly collapsing
curve over a few months. A sagittal plane kyphotic deformity was seen in 37 of 60 patients
(62%) with appropriate radiographs, with 23 (38%) showing lumbar
lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids
and other forms of treatment on the natural history of scoliosis
in patients with DMD, and an approach to assessing spinal deformity
in the coronal and sagittal planes in wheelchair-dependent patients
with other neuromuscular disorders. Cite this article: