Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1689 - 1696
1 Dec 2020
Halai MM Pinsker E Mann MA Daniels TR

Aims. Preoperative talar valgus deformity ≥ 15° is considered a contraindication for total ankle arthroplasty (TAA). We compared operative procedures and clinical outcomes of TAA in patients with talar valgus deformity ≥ 15° and < 15°. Methods. A matched cohort of patients similar for demographics and components used but differing in preoperative coronal-plane tibiotalar valgus deformity ≥ 15° (valgus, n = 50; 52% male, mean age 65.8 years (SD 10.3), mean body mass index (BMI) 29.4 (SD 5.2)) or < 15° (control, n = 50; 58% male, mean age 65.6 years (SD 9.8), mean BMI 28.7 (SD 4.2)), underwent TAA by one surgeon. Preoperative and postoperative radiographs, Ankle Osteoarthritis Scale (AOS) pain and disability and 36-item Short Form Health Survey (SF-36) version 2 scores were collected prospectively. Ancillary procedures, secondary procedures, and complications were recorded. Results. At mean 5.1 years follow-up (SD 2.6) (valgus) and 6.6 years (SD 3.3) (controls), mean AOS scores decreased and SF-36 scores increased significantly in both groups. Improvements in scores were similar for both groups – AOS pain: valgus, mean 26.2 points (SD 24.2), controls, mean 22.3 points (SD 26.4); AOS disability: valgus, mean 41.2 points (SD 25.6); controls, mean 34.6 points (SD 24.3); and SF-36 PCS: valgus, mean 9.1 points (SD 14.1), controls, mean 7.4 points (SD 9.8). Valgus ankles underwent more ancillary procedures during TAA (40 (80%) vs 13 (26%)) and more secondary procedures postoperatively (18 (36%) vs 7 (14%)) than controls. Tibiotalar deformity improved significantly (p < 0.001) towards a normal weightbearing axis in valgus ankles. Three valgus and four control ankles required subsequent fusion, including two for deep infections (one in each group). Conclusion. Satisfactory mid-term results were achieved in patients with preoperative valgus malalignment ≥ 15°, but they required more adjunctive procedures during and after TAA. Valgus coronal-plane deformity ≥ 15° is not an absolute contraindication for TAA if associated deformities are addressed. Cite this article: Bone Joint J 2020;102-B(12):1689–1696


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1656 - 1661
1 Dec 2013
Kraal T van der Heide HJL van Poppel BJ Fiocco M Nelissen RGHH Doets HC

Little is known about the long-term outcome of mobile-bearing total ankle replacement (TAR) in the treatment of end-stage arthritis of the ankle, and in particular for patients with inflammatory joint disease. The aim of this study was to assess the minimum ten-year outcome of TAR in this group of patients.

We prospectively followed 76 patients (93 TARs) who underwent surgery between 1988 and 1999. No patients were lost to follow-up. At latest follow-up at a mean of 14.8 years (10.7 to 22.8), 30 patients (39 TARs) had died and the original TAR remained in situ in 28 patients (31 TARs). The cumulative incidence of failure at 15 years was 20% (95% confidence interval (CI) 11 to 28). The mean American Orthopaedic Foot and Ankle Society (AOFAS) ankle–hindfoot score of the surviving patients at latest follow-up was 80.4 (95% CI 72 to 88). In total, 21 patients (23 TARs) underwent subsequent surgery: three implant exchanges, three bearing exchanges and 17 arthrodeses. Neither design of TAR described in this study, the LCS and the Buechel–Pappas, remains currently available. However, based both on this study and on other reports, we believe that TAR using current mobile-bearing designs for patients with end-stage arthritis of the ankle due to inflammatory joint disease remains justified.

Cite this article: Bone Joint J 2013;95-B:1656–61.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 138 - 140
1 Jan 2012
Jung S Park H Chung J

In distal fibular resection without reconstruction, the stabilising effect of the lateral malleolus is lost. Thus, the ankle may collapse into valgus and may be unstable in varus. Here, we describe a child who underwent successful staged surgical correction of a severe neglected valgus deformity after excision of the distal fibula for a Ewing’s sarcoma.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1232 - 1239
1 Sep 2011
Stufkens SA van Bergen CJ Blankevoort L van Dijk CN Hintermann B Knupp M

It has been suggested that a supramalleolar osteotomy can return the load distribution in the ankle joint to normal. However, due to the lack of biomechanical data, this supposition remains empirical. The purpose of this biomechanical study was to determine the effect of simulated supramalleolar varus and valgus alignment on the tibiotalar joint pressure, in order to investigate its relationship to the development of osteoarthritis. We also wished to establish the rationale behind corrective osteotomy of the distal tibia.

We studied 17 cadaveric lower legs and quantified the changes in pressure and force transfer across the tibiotalar joint for various degrees of varus and valgus deformity in the supramalleolar area. We assumed that a supramalleolar osteotomy which created a varus deformity of the ankle would result in medial overload of the tibiotalar joint. Similarly, we thought that creating a supramalleolar valgus deformity would cause a shift in contact towards the lateral side of the tibiotalar joint. The opposite was observed. The restricting role of the fibula was revealed by carrying out an osteotomy directly above the syndesmosis. In end-stage ankle osteoarthritis with either a valgus or varus deformity, the role of the fibula should be appreciated and its effect addressed where appropriate.