Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre.Aims
Methods
This was a randomised controlled trial studying
the safety of a new short metaphyseal fixation (SMF) stem. We hypothesised
that it would have similar early clinical results and micromovement
to those of a standard-length tapered Synergy metaphyseal fixation
stem. Using radiostereometric analysis (RSA) we compared the two
stems in 43 patients. A short metaphyseal fixation stem was used
in 22 patients and a Synergy stem in 21 patients. No difference
was found in the clinical outcomes pre- or post-operatively between
groups. RSA showed no significant differences two years post-operatively
in mean micromovement between the two stems (except for varus/valgus tilt
at p = 0.05) (subsidence 0.94 mm ( Cite this article:
Many different lengths of stem are available
for use in primary total hip replacement, and the morphology of
the proximal femur varies greatly. The more recently developed shortened
stems provide a distribution of stress which closely mimics that
of the native femur. Shortening the femoral component potentially
comes at the cost of decreased initial stability. Clinical studies
on the performance of shortened cemented and cementless stems are promising,
although long-term follow-up studies are lacking. We provide an
overview of the current literature on the anatomical features of
the proximal femur and the biomechanical aspects and clinical outcomes
associated with the length of the femoral component in primary hip
replacement, and suggest a classification system for the length
of femoral stems. Cite this article: