The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other.Aims
Methods
The purpose of this study was to use pharmacogenetics to determine the frequency of genetic variants in our total knee arthroplasty (TKA) patients that could affect postoperative pain medications. Pharmacogenetic testing evaluates patient DNA to determine if a drug is expected to have a normal clinical effect, heightened effect, or no effect at all on the patient. It also predicts whether patients are likely to experience side effects from medicine. We further sought to determine if changing the multimodal programme based on these results would improve pain control or reduce side effects. In this pilot study, buccal samples were collected from 31 primary TKA patients. Pharmacogenetics testing examined genetic variants in genes Aims
Methods
Total knee replacement (TKR)
A total of 11 patients (12 knees) with stable lesions of osteochondritis dissecans of the knee underwent arthroscopic fixation of the fragments using polylactide bioabsorbable pins. The site of the lesion was the medial femoral condyle in ten knees and the lateral femoral condyle in two. The mean age of the patients was 14.8 years (12 to 16). At a mean follow-up of 32.4 months (13 to 38 months) all fragments had MRI evidence of union. One patient developed early transient synovitis, which resolved with non-steroidal anti-inflammatory medication. All patients returned to sporting activities within eight months of operation and did not require a period of immobilisation.
There have been many reports which suggest that in patients with tibiofemoral osteoarthritis, a reduction in joint space is demonstrated better on weight-bearing radiographs taken with the knee in semiflexion than in full extension. The reduction has been attributed to the loss of articular cartilage in the contact area in a semiflexed arthritic knee. None of these studies have, however, included normal knees. We have therefore undertaken a prospective, double-blind, randomised study in order to evaluate the difference in the joint-space of arthroscopically-proven normal tibiofemoral joints as seen on weight-bearing full-extension and 30° flexion posteroanterior radiographs. Twenty-two knees were evaluated and the results showed that there may be a difference of up to 2 mm in the two views. This difference could be attributed to the inherent differential thickness of the articular cartilage in different areas of the femoral and tibial condyles and a change in the areas of contact between them.