To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA). This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.Aims
Methods
To map literature on prognostic factors related to outcomes of revision total knee arthroplasty (rTKA), to identify extensively studied factors and to guide future research into what domains need further exploration. We performed a systematic literature search in MEDLINE, Embase, and Web of Science. The search string included multiple synonyms of the following keywords: "revision TKA", "outcome" and "prognostic factor". We searched for studies assessing the association between at least one prognostic factor and at least one outcome measure after rTKA surgery. Data on sample size, study design, prognostic factors, outcomes, and the direction of the association was extracted and included in an evidence map.Aims
Methods
Aims. The aims of this study were to assess mapping models to predict the three-level version of EuroQoL five-dimension utility index (EQ-5D-3L) from the Oxford Knee Score (OKS) and validate these before and after total knee arthroplasty (TKA). Methods. A retrospective cohort of 5,857 patients was used to create the
Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of predictions were within 15 minutes of actual operating time, with 73% within ten minutes. The predictive model including demographic data and CT scans showed that 94% of predictions were within 15 minutes of actual operating time and 88% within ten minutes. Conclusion. The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-specific data can improve operating time
Debate remains whether the patella should be resurfaced during total knee replacement (TKR). For non-resurfaced TKRs, we estimated what the revision rate would have been if the patella had been resurfaced, and examined the risk of re-revision following secondary patellar resurfacing. A retrospective observational study of the National Joint Registry (NJR) was performed. All primary TKRs for osteoarthritis alone performed between 1 April 2003 and 31 December 2016 were eligible (n = 842,072). Patellar resurfacing during TKR was performed in 36% (n = 305,844). The primary outcome was all-cause revision surgery. Secondary outcomes were the number of excess all-cause revisions associated with using TKRs without (versus with) patellar resurfacing, and the risk of re-revision after secondary patellar resurfacing.Aims
Methods
The purpose of this study was to develop a personalized outcome prediction tool, to be used with knee arthroplasty patients, that predicts outcomes (lengths of stay (LOS), 90 day readmission, and one-year patient-reported outcome measures (PROMs) on an individual basis and allows for dynamic modifiable risk factors. Data were prospectively collected on all patients who underwent total or unicompartmental knee arthroplasty at a between July 2015 and June 2018. Cohort 1 (n = 5,958) was utilized to develop models for LOS and 90 day readmission. Cohort 2 (n = 2,391, surgery date 2015 to 2017) was utilized to develop models for one-year improvements in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score, KOOS function score, and KOOS quality of life (QOL) score. Model accuracies within the imputed data set were assessed through cross-validation with root mean square errors (RMSEs) and mean absolute errors (MAEs) for the LOS and PROMs models, and the index of prediction accuracy (IPA), and area under the curve (AUC) for the readmission models. Model accuracies in new patient data sets were assessed with AUC.Aims
Methods
Unicompartmental knee arthroplasty (UKA) provides improved early functional outcomes and less postoperative morbidity and pain compared with total knee arthroplasty (TKA). Opioid prescribing has increased in the last two decades, and recently states in the USA have developed online Prescription Drug Monitoring Programs to prevent overprescribing of controlled substances. This study evaluates differences in opioid requirements between patients undergoing TKA and UKA. We retrospectively reviewed 676 consecutive TKAs and 241 UKAs. Opioid prescriptions in morphine milligram equivalents (MMEs), sedatives, benzodiazepines, and stimulants were collected from State Controlled Substance Monitoring websites six months before and nine months after the initial procedures. Bivariate and multivariate analysis were performed for patients who had a second prescription and continued use.Aims
Patients and Methods
This study demonstrates a significant correlation
between the American Knee Society (AKS) Clinical Rating System and
the Oxford Knee Score (OKS) and provides a validated prediction
tool to estimate score conversion. A total of 1022 patients were prospectively clinically assessed
five years after TKR and completed AKS assessments and an OKS questionnaire.
Multivariate regression analysis demonstrated significant correlations between
OKS and the AKS knee and function scores but a stronger correlation
(r = 0.68, p <
0.001) when using the sum of the AKS knee and
function scores. Addition of body mass index and age (other statistically
significant predictors of OKS) to the algorithm did not significantly
increase the predictive value. The simple regression model was used to predict the OKS in a
group of 236 patients who were clinically assessed nine to ten years
after TKR using the AKS system. The predicted OKS was compared with
actual OKS in the second group. Intra-class correlation demonstrated
excellent reliability (r = 0.81, 95% confidence intervals 0.75 to
0.85) for the combined knee and function score when used to predict
OKS. Our findings will facilitate comparison of outcome data from
studies and registries using either the OKS or the AKS scores and
may also be of value for those undertaking meta-analyses and systematic
reviews. Cite this article:
Early and accurate prediction of hospital length-of-stay
(LOS) in patients undergoing knee replacement is important for economic
and operational reasons. Few studies have systematically developed
a multivariable model to predict LOS. We performed a retrospective
cohort study of 1609 patients aged ≥ 50 years who underwent elective,
primary total or unicompartmental knee replacements. Pre-operative
candidate predictors included patient demographics, knee function,
self-reported measures, surgical factors and discharge plans. In
order to develop the model, multivariable regression with bootstrap
internal validation was used. The median LOS for the sample was
four days (interquartile range 4 to 5). Statistically significant
predictors of longer stay included older age, greater number of comorbidities,
less knee flexion range of movement, frequent feelings of being
down and depressed, greater walking aid support required, total
(versus unicompartmental) knee replacement, bilateral
surgery, low-volume surgeon, absence of carer at home, and expectation
to receive step-down care. For ease of use, these ten variables were
used to construct a nomogram-based