Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.Aims
Methods
Aims. Traditionally, acetabular component insertion during total hip arthroplasty (THA) is visually assisted in the posterior approach and fluoroscopically assisted in the anterior approach. The present study examined the accuracy of a new surgeon during anterior (NSA) and posterior (NSP) THA using robotic arm-assisted technology compared to two experienced surgeons using traditional methods. Methods. Prospectively collected data was reviewed for 120 patients at two institutions. Data were collected on the first 30 anterior approach and the first 30 posterior approach surgeries performed by a newly graduated arthroplasty surgeon (all using robotic arm-assisted technology) and was compared to standard THA by an experienced anterior (SSA) and posterior surgeon (SSP). Acetabular component inclination, version, and leg length were calculated postoperatively and differences calculated based on postoperative film measurement. Results. Demographic data were similar between groups with the exception of BMI being lower in the NSA group (27.98 vs 25.2; p = 0.005). Operating time and total time in operating room (TTOR) was lower in the SSA (p < 0.001) and TTOR was higher in the NSP group (p = 0.014). Planned versus postoperative leg length discrepancy were similar among both anterior and posterior surgeries (p > 0.104). Planned versus postoperative abduction and anteversion were similar among the NSA and SSA (p > 0.425), whereas planned versus postoperative abduction and anteversion were lower in the NSP (p < 0.001).
The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (Objectives
Materials and Methods
One goal of total hip arthroplasty is to restore normal hip anatomy.
The aim of this study was to compare displacement of the centre
of rotation (COR) using a standard reaming technique with a technique
in which the acetabulum was reamed immediately peripherally and
referenced off the rim. In the first cohort the acetabulum was reamed to the floor followed
by sequentially larger reamers. In the second cohort the acetabulum
was only reamed peripherally, starting with a reamer the same size
as the native femoral head. Anteroposterior pelvic radiographs were
analysed for acetabular floor depth and vertical and horizontal position
of the COR.Aims
Patients and Methods
A high radiographic inclination angle (RI) contributes
to accelerated wear and has been associated with dislocation after
total hip arthroplasty (THA). With freehand positioning of the acetabular
component there is a lack of accuracy, with a trend towards a high
radiographic inclination angle. The aim of this study was to investigate
whether the use of a digital protractor to measure the operative
inclination angle (OI) could improve the positioning of the acetabular
component in relation to a ‘safe zone’. We measured the radiographic inclination angles of 200 consecutive
uncemented primary THAs. In the first 100 the component was introduced
freehand and in the second 100 a digital protractor was used to
measure the operative inclination angle. The mean difference between the operative and the radiographic
inclination angles
(∆RI–OI) in the second cohort was 12.3° (3.8° to 19.8°). There was
a strong correlation between the circumference of the hip and ∆RI–OI.
The number of RI outliers was significantly reduced in the protractor
group (p = 0.002). Adjusting the OI, using a digital protractor and taking into
account the circumference of the patient’s hip, improves the RI
significantly (p <
0.001) and does not require additional operating
time. Cite this article:
Large femoral heads have become popular in total
hip replacement (THR) as a method of reducing the risk of dislocation.
However, if large heads are used in ceramic-on-ceramic THR, the
liner must be thinner, which may increase the risk of fracture.
To compare the rates of ceramic fracture and dislocation between
28 mm and 32 mm ceramic heads, 120 hips in 109 patients (51 men
and 58 women, mean age 49.2 years) were randomised to THR with either
a 28 mm or a 32 mm ceramic articulation. A total of 57/60 hips assigned
to the 28 mm group and 55/60 hips assigned to the 32 mm group were
followed for at least five years. No ceramic component fractures
occured in any patient in either group. There was one dislocation
in the 32 mm group and none in the 28 mm group (p = 0.464). No hip
had detectable wear, focal osteolysis or prosthetic loosening. In
our small study the 32 mm ceramic articulation appeared to be safe
in terms of ceramic liner fracture. Cite this article:
A retrospective study was conducted to investigate
the changes in metal ion levels in a consecutive series of Birmingham
Hip Resurfacings (BHRs) at a minimum ten-year follow-up. We reviewed
250 BHRs implanted in 232 patients between 1998 and 2001. Implant
survival, clinical outcome (Harris hip score), radiographs and serum chromium
(Cr) and cobalt (Co) ion levels were assessed. Of 232 patients, 18 were dead (five bilateral BHRs), 15 lost
to follow-up and ten had been revised. The remaining 202 BHRs in
190 patients (136 men and 54 women; mean age at surgery 50.5 years
(17 to 76)) were evaluated at a minimum follow-up of ten years (mean
10.8 years (10 to 13.6)). The overall implant survival at 13.2 years
was 92.4% (95% confidence interval 90.8 to 94.0). The mean Harris
hip score was 97.7 (median 100; 65 to 100). Median and mean ion
levels were low for unilateral resurfacings (Cr: median 1.3 µg/l,
mean
1.95 µg/l (<
0.5 to 16.2); Co: median 1.0 µg/l, mean 1.62 µg/l
(<
0.5 to 17.3)) and bilateral resurfacings (Cr: median 3.2 µg/l,
mean 3.46 µg/l (<
0.5 to 10.0); Co: median 2.3 µg/l, mean 2.66
µg/l (<
0.5 to 9.5)). In 80 unilateral BHRs with sequential ion
measurements, Cr and Co levels were found to decrease significantly
(p <
0.001) from the initial assessment at a median of six years
(4 to 8) to the last assessment at a median of 11 years (9 to 13),
with a mean reduction of 1.24 µg/l for Cr and 0.88 µg/l for Co.
Three female patients had a >
2.5 µg/l increase of Co ions, associated with
head sizes ≤ 50 mm, clinical symptoms and osteolysis. Overall, there
was no significant difference in change of ion levels between genders
(Cr, p = 0.845; Co, p = 0.310) or component sizes (Cr, p = 0.505;
Co, p = 0.370). Higher acetabular component inclination angles correlated
with greater change in ion levels (Cr, p = 0.013; Co, p = 0.002).
Patients with increased ion levels had lower Harris hip scores (p
= 0.038). In conclusion, in well-functioning BHRs the metal ion levels
decreased significantly at ten years. An increase >
2.5 µg/l was
associated with poor function. Cite this article:
Pseudotumour is a rare but important complication of metal-on-metal hip resurfacing that occurs much more commonly in women than in men. We examined the relationship between head-neck ratio (HNR) and pseudotumour formation in 18 resurfaced hips (18 patients) revised for pseudotumour and 42 asymptomatic control resurfaced hips (42 patients). Patients in whom pseudotumour formation had occurred had higher pre-operative HNR than the control patients (mean 1.37 ( We suggest that reducing the size of the femoral head, made possible by a high pre-operative HNR, increases the risk of impingement and edge loading, and may contribute to high wear and pseudotumour formation. As the incidence of pseudotumour is low in men, it appears safe to perform resurfacing in men. However, this study suggests that it is also reasonable to resurface in women with a pre-operative HNR ≤ 1.3.
We describe the findings at six years in an ongoing prospective clinicoradiological and metal ion study in a cohort of 26 consecutive male patients with unilateral Birmingham Hip Resurfacing arthroplasties with one of two femoral head sizes (50 mm and 54 mm). Their mean age was 52.9 years (29 to 67). We have previously shown an early increase in the 24-hour urinary excretion of metal ions, reaching a peak at six months (cobalt) and one year (chromium) after operation. Subsequently there is a decreasing trend in excretion of both cobalt and chromium. The levels of cobalt and chromium in whole blood also show a significant increase at one year, followed by a decreasing trend until the sixth year.
Increased concentrations of metal ions after metal-on-metal resurfacing arthroplasty of the hip remain a concern. Although there has been no proven link to long-term health problems or early prosthetic failure, variables associated with high metal ion concentrations should be identified and, if possible, corrected. Our study provides data on metal ion levels from a series of 76 consecutive patients (76 hips) after resurfacing arthroplasty with the Articular Surface Replacement. Chromium and cobalt ion concentrations in the whole blood of patients with smaller (≤ 51 mm) femoral components were significantly higher than in those with the larger (≥ 53 mm) components (p <
0.01). Ion concentrations in the former group were significantly related to the inclination (p = 0.01) and anteversion (p = 0.01) of the acetabular component. The same relationships were not significant in the patients with larger femoral components (p = 0.61 and p = 0.49, respectively). Accurate positioning of the acetabular component intra-operatively is essential in order to reduce the concentration of metal ions in the blood after hip resurfacing arthroplasty with the Articular Surface Replacement implant.