Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Bone & Joint Research
Vol. 4, Issue 11 | Pages 176 - 180
1 Nov 2015
Mirghasemi SA Rashidinia S Sadeghi MS Talebizadeh M Rahimi N

Objectives

There are various pin-in-plaster methods for treating fractures of the distal radius. The purpose of this study is to introduce a modified technique of ‘pin in plaster’.

Methods

Fifty-four patients with fractures of the distal radius were followed for one year post-operatively. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than seven days after injury. Range of movement and functional results were evaluated at three and six months and one and two years post-operatively. Radiographic parameters including radial inclination, tilt, and height, were measured pre- and post-operatively.


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


Bone & Joint 360
Vol. 3, Issue 3 | Pages 39 - 40
1 Jun 2014
Arastu M


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 315 - 319
1 Feb 2010
Lalliss SJ Branstetter JG

Using an osteotomy of the olecranon as a model of a transverse fracture in 22 cadaver elbows we determined the ability of three different types of suture and stainless steel wire to maintain reduction when using a tension-band technique to stabilise the bone. Physiological cyclical loading simulating passive elbow movement (15 N) and using the arms to push up from a chair (450 N) were applied using an Instron materials testing machine whilst monitoring the osteotomy site with a video extensometer. Each osteotomy was repaired by one of four materials, namely, Stainless Steel Wire (7), No 2 Ethibond (3), No 5 Ethibond (5), or No 2 FiberWire (7).

There were no failures (movement of > 2 mm) with stainless steel wire or FiberWire and no significant difference in the movements measured across the site of the osteotomy (p = 0.99). The No. 2 Ethibond failed at 450 N and two of the five of No. 5 Ethibond sutures had a separation of > 2 mm at 450 N.

FiberWire as the tension band in this model held the reduction as effectively as stainless steel wire and may reduce the incidence of discomfort from the hardware. On the basis of our findings we suggest that a clinical trial should be undertaken


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 265 - 272
1 Feb 2007
Ristiniemi J Flinkkilä T Hyvönen P Lakovaara M Pakarinen H Jalovaara P

External fixation of distal tibial fractures is often associated with delayed union. We have investigated whether union can be enhanced by using recombinant bone morphogenetic protein-7 (rhBMP-7).

Osteoinduction with rhBMP-7 and bovine collagen was used in 20 patients with distal tibial fractures which had been treated by external fixation (BMP group). Healing of the fracture was compared with that of 20 matched patients in whom treatment was similar except that rhBMP-7 was not used.

Significantly more fractures had healed by 16 (p = 0.039) and 20 weeks (p = 0.022) in the BMP group compared with the matched group. The mean time to union (p = 0.002), the duration of absence from work (p = 0.018) and the time for which external fixation was required (p = 0.037) were significantly shorter in the BMP group than in the matched group. Secondary intervention due to delayed healing was required in two patients in the BMP group and seven in the matched group.

RhBMP-7 can enhance the union of distal tibial fractures treated by external fixation.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 12 | Pages 1694 - 1699
1 Dec 2005
Floerkemeier T Hurschler C Witte F Wellmann M Thorey F Vogt U Windhagen H

The ability to predict load-bearing capacity during the consolidation phase in distraction osteogenesis by non-invasive means would represent a significant advance in the management of patients undergoing such treatment. Measurements of stiffness have been suggested as a promising tool for this purpose. Although the multidimensional characteristics of bone loading in compression, bending and torsion are apparent, most previous experiments have analysed only the relationship between maximum load-bearing capacity and a single type of stiffness. We have studied how compressive, bending and torsional stiffness are related to the torsional load-bearing capacity of healing callus using a common set of samples of bone regenerate from 26 sheep treated by tibial distraction osteogenesis.

Our findings showed that measurements of torsional, bending and compressive stiffness were all suitable as predictors of the load-bearing capacity of healing callus. Measurements of torsional stiffness performed slightly better than those of compressive and bending stiffness.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1070 - 1074
1 Sep 2002
Dumont CE Thalmann R Macy JC

We have assessed the influence of isolated and combined rotational malunion of the radius and ulna on the rotation of the forearm. Osteotomies were made in both the radius and the ulna at the mid-diaphyseal level of five cadaver forearms and stabilised with intramedullary metal implants. Malunion about the axis of the respective forearm bone was produced at intervals of 10°. The ranges of pronation and supination were recorded by a potentiometer under computer control. We examined rotational malunions of 10° to 80° of either the radius or ulna alone and combined rotational malunions of 20° to 60° of both the radius and ulna. Malunion of the ulna in supination had little effect on rotation of the forearm. Malunion of either the radius or of the ulna in pronation gave a moderate reduction of rotation of the forearm. By contrast, malunion of the radius in supination markedly reduced rotation of the forearm, especially with malunion greater than 60°. Combined rotational malunion produced contrasting results. A combination of rotational malunion of the radius and ulna in the same direction had an effect similar to that of an isolated malunion of the radius. A combination in the opposite direction gave the largest limitation of the range of movement. Clinically, rotational malunion may be isolated or part of a complex angular/rotational deformity and rotational malunion may lead to marked impairment of rotation of the forearm. A reproducible method for assessing rotational malunion is therefore needed


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 7 | Pages 1056 - 1062
1 Sep 2001
Bono CM Renard R Levine RG Levy AS

Using a dynamic biomechanical model of malunion of the shoulder, we have determined the change in deltoid force required for abduction with various combinations of superior and posterior displacement of fractures of the greater tuberosity of the humerus. We tested eight fresh human cadaver shoulders in a dynamic shoulder-testing apparatus during cycles of glenohumeral abduction from 0° to 90°. The greater tuberosities were osteotomised and stabilised to represent malunion with combinations of superior and posterior displacements of 1 cm and less. The peak force was measured for each displacement in each specimen and statistically compared with values of no displacement using a repeated-measures analysis of variance. The abduction force was significantly increased by 16% (p = 0.006) and 27% (p = 0.0001) by superior displacements of 0.5 cm and 1 cm, respectively, while combined superior and posterior displacement of 1 cm gave an increase in force of 29% (p = 0.001). While treatment criteria for acceptable residual displacement of the greater tuberosity are widely used, there is little information on the direct biomechanical effects of displacement on shoulder mechanics. Although the results of conservative treatment are influenced by a number of factors, including associated injuries, rehabilitation and the pre-existing function of the shoulder, our data suggest that small amounts of residual displacement may alter the balance of forces required to elevate the arm at the glenohumeral joint