The purpose of this study was to compare the thickness of the hip capsule in patients with surgical hip disease, either with cam-femoroacetabular impingement (FAI) or non-FAI hip pathology, with that of asymptomatic control hips. A total of 56 hips in 55 patients underwent a 3Tesla MRI of the hip. These included 40 patients with 41 hips with arthroscopically proven hip disease (16 with cam-FAI; nine men, seven women; mean age 39 years, 22 to 58) and 25 with non-FAI chondrolabral pathology (four men, 21 women; mean age 40 years, 18 to 63) as well as 15 asymptomatic volunteers, whose hips served as controls (ten men, five women; mean age 62 years, 33 to 77). The maximal capsule thickness was measured anteriorly and superiorly, and compared within and between the three groups with a gender subanalysis using student’s Objectives
Methods
The purpose of this study was to investigate whether the femoral
head–neck contour, characterised by the alpha angle, varies with
the stage of physeal maturation using MRI evaluation of an asymptomatic
paediatric population. Paediatric volunteers with asymptomatic hips were recruited to
undergo MRI of both hips. Femoral head physes were graded from 1
(completely open) to 6 (completely fused). The femoral head–neck
contour was evaluated using the alpha angle, measured at the 3:00
(anterior) and 1:30 (anterosuperior) positions and correlated with
physeal grade, with gender sub-analysis performed.Objectives
Methods
Large-head metal-on-metal total hip replacement has a failure rate of almost 8% at five years, three times the revision rate of conventional hip replacement. Unexplained pain remains a feature of this type of arthroplasty. All designs of the femoral component of large-head metal-on-metal total hip replacements share a unique characteristic: a subtended angle of 120° defining the proportion of a sphere that the head represents. Using MRI, we measured the contact area of the iliopsoas tendon on the femoral head in sagittal reconstruction of 20 hips of patients with symptomatic femoroacetabular impingement. We also measured the articular extent of the femoral head on 40 normal hips and ten with cam-type deformities. Finally, we performed virtual hip resurfacing on normal and cam-type hips, avoiding overhang of the metal rim inferomedially. The articular surface of the femoral head has a subtended angle of 120° anteriorly and posteriorly, but only 100° medially. Virtual surgery in a normally shaped femoral head showed a 20° skirt of metal protruding medially where iliopsoas articulates. The excessive extent of the large-diameter femoral components may cause iliopsoas impingement independently of the acetabular component. This may be the cause of postoperative pain with these implants.
Metal-on-metal total hip replacement has been targeted at younger patients with anticipated long-term survival, but the effect of the production of metal ions is a concern because of their possible toxicity to cells. We have reviewed the results of the use of the Ultima hybrid metal-on-metal total hip replacement, with a cemented polished tapered femoral component with a 28 mm diameter and a cobalt-chrome (CoCr) modular head, articulating with a 28 mm CoCr acetabular bearing surface secured in a titanium alloy uncemented shell. Between 1997 and 2004, 545 patients with 652 affected hips underwent replacement using this system. Up to 31 January 2008, 90 (13.8%) hips in 82 patients had been revised. Pain was the sole reason for revision in 44 hips (48.9%) of which 35 had normal plain radiographs. Peri-prosthetic fractures occurred in 17 hips (18.9%) with early dislocation in three (3.3%) and late dislocation in 16 (17.8%). Infection was found in nine hips (10.0%). At operation, a range of changes was noted including cavities containing cloudy fluid under pressure, necrotic soft tissues with avulsed tendons and denuded osteonecrotic upper femora. Corrosion was frequently observed on the retrieved cemented part of the femoral component. Typically, the peri-operative findings confirmed those found on pre-operative metal artefact reduction