Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1127 - 1133
1 Aug 2013
Lama P Le Maitre CL Dolan P Tarlton JF Harding IJ Adams MA

The belief that an intervertebral disc must degenerate before it can herniate has clinical and medicolegal significance, but lacks scientific validity. We hypothesised that tissue changes in herniated discs differ from those in discs that degenerate without herniation. Tissues were obtained at surgery from 21 herniated discs and 11 non-herniated discs of similar degeneration as assessed by the Pfirrmann grade. Thin sections were graded histologically, and certain features were quantified using immunofluorescence combined with confocal microscopy and image analysis. Herniated and degenerated tissues were compared separately for each tissue type: nucleus, inner annulus and outer annulus.

Herniated tissues showed significantly greater proteoglycan loss (outer annulus), neovascularisation (annulus), innervation (annulus), cellularity/inflammation (annulus) and expression of matrix-degrading enzymes (inner annulus) than degenerated discs. No significant differences were seen in the nucleus tissue from herniated and degenerated discs. Degenerative changes start in the nucleus, so it seems unlikely that advanced degeneration caused herniation in 21 of these 32 discs. On the contrary, specific changes in the annulus can be interpreted as the consequences of herniation, when disruption allows local swelling, proteoglycan loss, and the ingrowth of blood vessels, nerves and inflammatory cells.

In conclusion, it should not be assumed that degenerative changes always precede disc herniation.

Cite this article: Bone Joint J 2013;95-B:1127–33.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 491 - 495
1 May 2001
Takahashi M Haro H Wakabayashi Y Kawa-uchi T Komori H Shinomiya K

It has been suggested that matrix metalloproteinase-3 (MMP-3, stromelysin-1) has an important role in the degeneration of intervertebral discs (IVDs). A human MMP-3 promoter 5A/6A polymorphism was reported to be involved in the regulation of MMP-3 gene expression. We suggest that IVD degeneration is associated with 5A/6A polymorphism. We studied 54 young and 49 elderly Japanese subjects. Degeneration of the lumbar discs was graded using MRI in the younger group and by radiography in the elderly. 5A/6A polymorphism was determined by polymerase-chain reaction-based assays. We found that the 5A5A and 5A6A genotype in the elderly was associated with a significantly larger number of degenerative IVDs than the 6A6A (p < 0.05), but there was no significant difference in the young. In the elderly, the IVD degenerative scores were also distributed more highly in the 5A5A and 5A6A genotypes (p = 0.0029). Our findings indicate that the 5A allele is a possible risk factor for the acceleration of degenerative changes in the lumbar disc in the elderly