Historically, patients undergoing surgery for adolescent idiopathic scoliosis (AIS) have been nursed postoperatively in a critical care (CC) setting because of the challenges posed by prone positioning, extensive exposures, prolonged operating times, significant blood loss, major intraoperative fluid shifts, cardiopulmonary complications, and difficulty in postoperative pain management. The primary aim of this paper was to determine whether a scoring system, which uses Cobb angle, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and number of levels to be fused, is a valid method of predicting the need for postoperative critical care in AIS patients who are to undergo scoliosis correction with posterior spinal fusion (PSF). We retrospectively reviewed all AIS patients who had undergone PSF between January 2018 and January 2020 in a specialist tertiary spinal referral centre. All patients were assessed preoperatively in an anaesthetic clinic. Postoperative care was defined as ward-based (WB) or critical care (CC)Aims
Methods
The management of spinal deformity in children
with univentricular cardiac pathology poses significant challenges to
the surgical and anaesthetic teams. To date, only posterior instrumented
fusion techniques have been used in these children and these are
associated with a high rate of complications. We reviewed our experience
of both growing rod instrumentation and posterior instrumented fusion
in children with a univentricular circulation. Six children underwent spinal corrective surgery, two with cavopulmonary
shunts and four following completion of a Fontan procedure. Three
underwent growing rod instrumentation, two had a posterior fusion
and one had spinal growth arrest. There were no complications following
surgery, and the children undergoing growing rod instrumentation
were successfully lengthened. We noted a trend for greater blood
loss and
The aim of this study was first, to determine
whether CT scans undertaken to identify serious injury to the viscera were
of use in detecting clinically unrecognised fractures of the thoracolumbar
vertebrae, and second, to identify patients at risk of ‘missed injury’. . We retrospectively analysed CT scans of the chest and abdomen
performed for blunt injury to the torso in 303 patients. These proved
to be positive for thoracic and intra-abdominal injuries in only
2% and 1.3% of cases, respectively. However, 51 (16.8%) showed a
fracture of the thoracolumbar vertebrae and these constituted our subset
for study. There were eight women and 43 men with mean age of 45.2
years (15 to 94). There were 29 (57%) stable and 22 (43%) unstable
fractures. Only 17 fractures (33.3%) had been anticipated after
clinical examination. Of the 22 unstable fractures, 11 (50%) were
anticipated. Thus, within the whole group of 303 patients, an unstable spinal
injury was missed in 11 patients (3.6%); no harm resulted as they
were all protected until the spine had been cleared. A subset analysis
revealed that patients with a high Injury Severity Score, a low
Glasgow Coma Scale and