Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 12, Issue 7 | Pages 433 - 446
7 Jul 2023
Guo L Guo H Zhang Y Chen Z Sun J Wu G Wang Y Zhang Y Wei X Li P

Aims. To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods. Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in vivo. Results. HDAC4 markedly improved the survival rate and biofunction of chondrocytes. RNA-seq analysis of the EP and HDAC4 groups showed that HDAC4 induced 2,668 significant gene expression changes in chondrocytes (1,483 genes upregulated and 1,185 genes downregulated, p < 0.05), and ribosomes exhibited especially large increases. The results were confirmed by RNA-seq of the EP versus mutated HDAC4 groups and the validations in vitro and in vivo. Conclusion. The enhanced ribosome pathway plays a key role in the mechanism by which HDAC4 improves the survival rate and biofunction of chondrocytes. Cite this article: Bone Joint Res 2023;12(7):433–446


Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims

Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism.

Methods

In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 147 - 154
20 Feb 2023
Jia Y Qi X Ma M Cheng S Cheng B Liang C Guo X Zhang F

Aims. Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. Methods. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects. Results. Through discovery and replication integrative analysis for BMD GWAS and rSNP annotation database, we identified 36 common BMD-associated genes for BMD irrespective of regulatory elements, such as FAM3C (p. discovery GWAS. = 1.21 × 10. -25. , p. replication GWAS. = 1.80 × 10. -12. ), CCDC170 (p. discovery GWAS. = 1.23 × 10. -11. , p. replication GWAS. = 3.22 × 10. -9. ), and SOX6 (p. discovery GWAS. = 4.41 × 10. -15. , p. replication GWAS. = 6.57 × 10. -14. ). Then, for the 36 common target genes, multiple gene ontology (GO) terms were detected for BMD such as positive regulation of cartilage development (p = 9.27 × 10. -3. ) and positive regulation of chondrocyte differentiation (p = 9.27 × 10. -3. ). Conclusion. We explored the potential roles of rSNP in the genetic mechanisms of BMD and identified multiple candidate genes. Our study results support the implication of regulatory genetic variants in the development of OP. Cite this article: Bone Joint Res 2023;12(2):147–154


Bone & Joint Research
Vol. 11, Issue 12 | Pages 862 - 872
1 Dec 2022
Wang M Tan G Jiang H Liu A Wu R Li J Sun Z Lv Z Sun W Shi D

Aims. Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA. Methods. We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs. Results. During OA, there were 626, 97, 1,060, and 2,330 differentially expressed genes in articular cartilage, meniscus, synovium, and subchondral bone, respectively. Gene Ontology enrichment revealed that these genes were enriched in extracellular matrix and structure organization, ossification, neutrophil degranulation, and activation at different degrees. Through ligand-receptor pairing and proteome of OA synovial fluid, we predicted ligand-receptor interactions and constructed a crosstalk atlas of the whole joint. Several interactions were reproduced by transwell experiment in chondrocytes and synovial cells, including TNC-NT5E, TNC-SDC4, FN1-ITGA5, and FN1-NT5E. After lipopolysaccharide (LPS) or interleukin (IL)-1β stimulation, the ligand expression of chondrocytes and synovial cells was upregulated, and corresponding receptors of co-culture cells were also upregulated. Conclusion. Each tissue displayed a different expression pattern in transcriptome, demonstrating their specific roles in OA. We highlighted tissue molecular crosstalk through ligand-receptor pairs in OA pathophysiology, and generated a crosstalk atlas. Strategies to interfere with these candidate ligands and receptors may help to discover molecular targets for future OA therapy. Cite this article: Bone Joint Res 2022;11(12):862–872


Bone & Joint Research
Vol. 8, Issue 7 | Pages 290 - 303
1 Jul 2019
Li H Yang HH Sun ZG Tang HB Min JK

Objectives. The aim of this study was to provide a comprehensive understanding of alterations in messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in cartilage affected by osteoarthritis (OA). Methods. The expression profiles of mRNAs, lncRNAs, and circRNAs in OA cartilage were assessed using whole-transcriptome sequencing. Bioinformatics analyses included prediction and reannotation of novel lncRNAs and circRNAs, their classification, and their placement into subgroups. Gene ontology and pathway analysis were performed to identify differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs). We focused on the overlap of DEGs and targets of DELs previously identified in seven high-throughput studies. The top ten DELs were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in articular chondrocytes, both in vitro and in vivo. Results. In total, 739 mRNAs, 1152 lncRNAs, and 42 circRNAs were found to be differentially expressed in OA cartilage tissue. Among these, we identified 18 overlapping DEGs and targets of DELs, and the top ten DELs were screened by expression profile analysis as candidate OA-related genes. WISP2, ATF3, and CHI3L1 were significantly increased in both normal versus OA tissues and normal versus interleukin (IL)-1β-induced OA-like cell models, while ADAM12, PRELP, and ASPN were shown to be significantly decreased. Among the identified DELs, we observed higher expression of ENST00000453554 and MSTRG.99593.3, and lower expression of MSTRG.44186.2 and NONHSAT186094.1 in normal versus OA cells and tissues. Conclusion. This study revealed expression patterns of coding and noncoding RNAs in OA cartilage, which added sets of genes and noncoding RNAs to the list of candidate diagnostic biomarkers and therapeutic agents for OA patients. Cite this article: H. Li, H. H. Yang, Z. G. Sun, H. B. Tang, J. K. Min. Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res 2019;8:290–303. DOI: 10.1302/2046-3758.87.BJR-2018-0297.R1


Bone & Joint Research
Vol. 7, Issue 4 | Pages 298 - 307
1 Apr 2018
Zhang X Bu Y Zhu B Zhao Q Lv Z Li B Liu J

Objectives. The aim of this study was to identify key pathological genes in osteoarthritis (OA). Methods. We searched and downloaded mRNA expression data from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) of joint synovial tissues from OA and normal individuals. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses were used to assess the function of identified DEGs. The protein-protein interaction (PPI) network and transcriptional factors (TFs) regulatory network were used to further explore the function of identified DEGs. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the result of bioinformatics analysis. Electronic validation was performed to verify the expression of selected DEGs. The diagnosis value of identified DEGs was accessed by receiver operating characteristic (ROC) analysis. Results. A total of 1085 DEGs were identified. KEGG pathway analysis displayed that Wnt was a significantly enriched signalling pathway. Some hub genes with high interactions such as USP46, CPVL, FKBP5, FOSL2, GADD45B, PTGS1, and ZNF423 were identified in the PPI and TFs network. The results of qRT-PCR showed that GADD45B, ADAMTS1, and TFAM were down-regulated in joint synovial tissues of OA, which was consistent with the bioinformatics analysis. The expression levels of USP46, CPVL, FOSL2, and PTGS1 in electronic validation were compatible with the bio-informatics result. CPVL and TFAM had a potential diagnostic value for OA based on the ROC analysis. Conclusion. The deregulated genes including USP46, CPVL, FKBP5, FOSL2, GADD45B, PTGS1, ZNF423, ADAMTS1, and TFAM might be involved in the pathology of OA. Cite this article: X. Zhang, Y. Bu, B. Zhu, Q. Zhao, Z. Lv, B. Li, J. Liu. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res 2018;7:298–307. DOI: 10.1302/2046-3758.74.BJR-2017-0245.R1