Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 10, Issue 9 | Pages 594 - 601
24 Sep 2021
Karunaseelan KJ Dandridge O Muirhead-Allwood SK van Arkel RJ Jeffers JRT

Aims

In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading.

Methods

Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1342 - 1346
1 Oct 2016
Spencer-Gardner L Pierrepont J Topham M Baré J McMahon S Shimmin AJ

Aims

Accurate placement of the acetabular component during total hip arthroplasty (THA) is an important factor in the success of the procedure. However, the reported accuracy varies greatly and is dependent upon whether free hand or navigated techniques are used. The aim of this study was to assess the accuracy of an instrument system that incorporates 3D printed, patient-specific guides designed to optimise the placement of the acetabular component.

Patients and Methods

A total of 100 consecutive patients were prospectively enrolled and the accuracy of placement of the acetabular component was measured using post-operative CT scans.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 764 - 769
1 Jun 2013
Roche JJW Jones CDS Khan RJK Yates PJ

The piriformis muscle is an important landmark in the surgical anatomy of the hip, particularly the posterior approach for total hip replacement (THR). Standard orthopaedic teaching dictates that the tendon must be cut in to allow adequate access to the superior part of the acetabulum and the femoral medullary canal. However, in our experience a routine THR can be performed through a posterior approach without sacrificing this tendon.

We dissected the proximal femora of 15 cadavers in order to clarify the morphological anatomy of the piriformis tendon. We confirmed that the tendon attaches on the crest of the greater trochanter, in a position superior to the trochanteric fossa, away from the entry point for broaching the intramedullary canal during THR. The tendon attachment site encompassed the summit and medial aspect of the greater trochanter as well as a variable attachment to the fibrous capsule of the hip joint. In addition we dissected seven cadavers resecting all posterior attachments except the piriformis muscle and tendon in order to study their relations to the hip joint, as the joint was flexed. At flexion of 90° the piriformis muscle lay directly posterior to the hip joint.

The piriform fossa is a term used by orthopaedic surgeons to refer the trochanteric fossa and normally has no relation to the attachment site of the piriformis tendon. In hip flexion the piriformis lies directly behind the hip joint and might reasonably be considered to contribute to the stability of the joint.

We conclude that the anatomy of the piriformis muscle is often inaccurately described in the current surgical literature and terms are used and interchanged inappropriately.

Cite this article: Bone Joint J 2013;95-B:764–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1494 - 1498
1 Nov 2012
Philippon MJ Pennock A Gaskill TR

Femoroacetabular impingement causes groin pain and decreased athletic performance in active adults. This bony conflict may result in femoroacetabular subluxation if of sufficient magnitude.

The ligamentum teres has recently been reported to be capable of withstanding tensile loads similar to that of the anterior cruciate ligament, and patents with early subluxation of the hip may become dependent on the secondary restraint that is potentially provided by the ligamentum teres. Rupture of the ligamentum may thus cause symptomatic hip instability during athletic activities.

An arthroscopic reconstruction of the ligamentum teres using iliotibial band autograft was performed in an attempt to restore this static stabiliser in a series of four such patients. Early clinical results have been promising. The indications, technique and early outcomes of this procedure are discussed.