The objective of this study was to determine if a synthetic bone
substitute would provide results similar to bone from osteoporotic
femoral heads during Pushout studies were performed with the dynamic hip screw (DHS)
and the DHS Blade in both cadaveric femoral heads and artificial
bone substitutes in the form of polyurethane foam blocks of different
density. The pushout studies were performed as a means of comparing
the force displacement curves produced by each implant within each
material.Introduction
Methods
Osteoporosis and fragility fractures in men constitute a considerable burden in healthcare. We have reviewed 2035 men aged over 50 years with 2142 fractures to clarify the epidemiology of these injuries and their underlying risk factors. The prevalence of osteoporosis ranged between 17.5% in fractures of the ankle and 57.8% in those of the hip. The main risk factors associated with osteoporosis were smoking (47.4%), alcohol excess (36.2%), body mass index <
21 (12.8%) and a family history of osteoporosis (8.4%). Immobility, smoking, self-reported alcohol excess, a low body mass index, age ≥72 and loss in height were significantly more common among men with fractures of the hip than in those with fractures elsewhere.
We carried out a retrospective review over ten months of patients who had presented with a low-energy subtrochanteric fracture. We identified 13 women of whom nine were on long-term alendronate therapy and four were not. The patients treated with alendronate were younger, with a mean age of 66.9 years (55 to 82) Our study suggests that prolonged suppression of bone remodelling with alendronate may be associated with a new form of insufficiency fracture of the femur. We believe that this finding is important and indicates the need for caution in the long-term use of alendronate in the treatment of osteoporosis.
The results of meta-analysis show a revision rate of 33% for internal fixation of displaced fractures of the femoral neck, mostly because of nonunion. Osteopenia and osteoporosis are highly prevalent in elderly patients. Bone density has been shown to correlate with the intrinsic stability of the fixation of the fracture in cadaver and retrospective studies. We aimed to confirm or refute this finding in a clinical setting. We performed a prospective, multicentre study of 111 active patients over 60 years of age with a displaced fracture of the femoral neck which was eligible for internal fixation. The bone density of the femoral neck was measured pre-operatively by dual-energy x-ray absorptiometry (DEXA). The patients were divided into two groups namely, those with osteopenia (66%, mean T-score −1.6) and those with osteoporosis (34%, mean T-score −3.0). Age (p = 0.47), gender (p = 0.67), delay to surgery (p = 0.07), the angle of the fracture (p = 0.33) and the type of implant (p = 0.48) were similar in both groups. Revision to arthroplasty was performed in 41% of osteopenic and 42% of osteoporotic patients (p = 0.87). Morbidity (p = 0.60) and mortality were similar in both groups (p = 0.65). Our findings show that the clinical outcome of internal fixation for displaced fractures of the femoral neck does not depend on bone density and that pre-operative DEXA is not useful.