Anterior cruciate ligament (ACL) rupture commonly leads to post-traumatic osteoarthritis, regardless of surgical reconstruction. This study uses standing MRI to investigate changes in contact area, contact centroid location, and tibiofemoral alignment between ACL-injured knees and healthy controls, to examine the effect of ACL reconstruction on these parameters. An upright, open MRI was used to directly measure tibiofemoral contact area, centroid location, and alignment in 18 individuals with unilateral ACL rupture within the last five years. Eight participants had been treated nonoperatively and ten had ACL reconstruction performed within one year of injury. All participants were high-functioning and had returned to sport or recreational activities. Healthy contralateral knees served as controls. Participants were imaged in a standing posture with knees fully extended.Aims
Methods
A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component.Aims
Methods
Anterior cruciate ligament (ACL) and multiligament knee (MLK) injuries increase the risk of development of knee osteoarthritis and eventual need for total knee arthroplasty (TKA). There are limited data regarding implant use and outcomes in these patients. The aim of this study was to compare the use of constrained implants and outcomes among patients undergoing TKA with a history of prior knee ligament reconstruction (PKLR) Patients with a history of ACL or MLK reconstruction who underwent TKA between 2007 and 2017 were identified in a single-institution registry. There were 223 patients who met inclusion criteria (188 ACL reconstruction patients, 35 MLK reconstruction patients). A matched cohort, also of 223 patients, was identified based on patient age, body mass index (BMI), sex, and year of surgery. There were 144 male patients and 79 female patients in both cohorts. Mean age at the time of TKA was 57.2 years (31 to 88). Mean BMI was 29.7 kg/m2 (19.5 to 55.7).Aims
Patients and Methods
Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs.Objectives
Methods
Meniscal allograft transplantation is undertaken to improve pain
and function in patients with a symptomatic meniscal deficient knee
compartment. While case series have shown improvements in patient
reported outcome measures (PROMs), its efficacy has not been rigorously
evaluated. This study aimed to compare PROMs in patients having
meniscal transplantation with those having personalized physiotherapy
at 12 months. A single-centre assessor-blinded, comprehensive cohort study,
incorporating a pilot randomized controlled trial (RCT) was performed
on patients with a symptomatic compartment of the knee in which
a (sub)total meniscectomy had previously been performed. They were
randomized to be treated either with a meniscal allograft transplantation
or personalized physiotherapy, and stratified for malalignment of
the limb. They entered the preference groups if they were not willing
to be randomized. The Knee injury and Osteoarthritis Outcome Score (KOOS),
International Knee Documentation Committee (IKDC) score and Lysholm
score and complications were collected at baseline and at four,
eight and 12 months following the interventions.Aims
Patients and Methods
Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.Objectives
Materials and Methods