Hip implant retrieval analysis is the most important
source of insight into the performance of new materials and designs
of hip arthroplasties. Even the most rigorous
Many radiographic techniques have been described for measuring patellar height. They can be divided into two groups: those that relate the position of the patella to the femur (direct) and those that relate it to the tibia (indirect). This article looks at the methods that have been described, the logic behind their conception and the critical analyses that have been performed to test them.
Neurological conditions affecting the hip pose a considerable challenge in replacement surgery since poor and imbalanced muscle tone predisposes to dislocation and loosening. Consequently, total hip replacement (THR) is rarely performed in such patients. In a systematic review of the literature concerning THR in neurological conditions, we found only 13 studies which described the outcome. We have reviewed the evidence and discussed the technical challenges of this procedure in patients with cerebral palsy, Parkinson’s disease, poliomyelitis and following a cerebrovascular accident, spinal injury or development of a Charcot joint. Contrary to traditional perceptions, THR can give a good outcome in these often severly disabled patients.
Fractures of the proximal interphalangeal joint include a wide spectrum of injuries, from stable avulsion fractures to complex fracture-dislocations. Stability of the joint is paramount in determining the appropriate treatment, which should aim to facilitate early mobilisation and restoration of function.
The advent of computer-assisted knee replacement surgery has focused interest on the alignment of the components. However, there is confusion at times between the alignment of the limb as a whole and that of the components. The interaction between them is discussed in this article. Alignment is expressed relative to some reference axis or plane and measurements will vary depending on what is selected as the reference. The validity of different reference axes is discussed. Varying prosthetic alignment has direct implications for surrounding soft-tissue tension. In this context the interaction between alignment and soft-tissue balance is explored and the current knowledge of the relationship between alignment and outcome is summarised.
The anatomical studies, basic to our understanding of lumbar spine innervation through the sinu-vertebral nerves, are reviewed. Research in the 1980s suggested that pain sensation was conducted in part via the sympathetic system. These sensory pathways have now been clarified using sophisticated experimental and histochemical techniques confirming a dual pattern. One route enters the adjacent dorsal root segmentally, whereas the other supply is non-segmental ascending through the paravertebral sympathetic chain with re-entry through the thoracolumbar white rami communicantes. Sensory nerve endings in the degenerative lumbar disc penetrate deep into the disrupted nucleus pulposus, insensitive in the normal lumbar spine. Complex as well as free nerve endings would appear to contribute to pain transmission. The nature and mechanism of discogenic pain is still speculative but there is growing evidence to support a ‘visceral pain’ hypothesis, unique in the muscloskeletal system. This mechanism is open to ‘peripheral sensitisation’ and possibly ‘central sensitisation’ as a potential cause of chronic back pain.
Talipes equinovarus is one of the more common congenital abnormalities affecting the lower limb and can be challenging to manage. This review provides a comprehensive update on idiopathic congenital talipes equinovarus with emphasis on the initial treatment. Current management is moving away from operative towards a more conservative treatment using the Ponseti regime. The long-term results of surgical correction and the recent results of conservative treatment will be discussed.
With the development of systems of trauma care the management of pelvic disruption has evolved and has become increasingly refined. The goal is to achieve an anatomical reduction and stable fixation of the fracture. This requires adequate visualisation for reduction of the fracture and the placement of fixation. Despite the advances in surgical approach and technique, the functional outcomes do not always produce the desired result. New methods of percutaneous treatment in conjunction with innovative computer-based imaging have evolved in an attempt to overcome the existing difficulties. This paper presents an overview of the technical aspects of percutaneous surgery of the pelvis and acetabulum.
We undertook a review of the literature relating to the two basic stem designs in use in cemented hip replacement, namely loaded tapers or force-closed femoral stems, and the composite beam or shape-closed designs. The associated stem fixation theory as understood from It is clear that both design principles are capable of producing successful long-term results, providing that their specific requirements of stem metallurgy, shape and surface finish, preparation of the bone and handling of the cement are observed.