Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting. There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response. The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of
Non-accidental injury (NAI) in children includes orthopaedic trauma throughout the skeleton. Fractures with soft-tissue injuries constitute the majority of manifestations of physical abuse in children. Fracture and injury patterns vary with age and development, and NAI is intrinsically related to the mobility of the child. No fracture in isolation is pathognomonic of NAI, but specific abuse-related injuries include multiple fractures, particularly at various stages of healing, metaphyseal corner and bucket-handle fractures and fractures of ribs. Isolated or multiple rib fractures, irrespective of location, have the highest specificity for NAI. Other fractures with a high specificity for abuse include those of the scapula, lateral end of the clavicle, vertebrae and complex skull fractures. Injuries caused by NAI constitute a relatively small proportion of childhood fractures. They may be associated with significant physical and psychological morbidity, with wide- ranging effects from deviations in normal developmental progression to death. Orthopaedic surgeons must systematically assess, recognise and act on the indicators for NAI in conjunction with the paediatric multidisciplinary team.
We performed a systematic review of the optimal management of septic arthritis in children as recommended in the current English literature using MEDLINE, EMBASE, CINAHL, the Cochrane Library and reference lists of retrieved articles without date restrictions up to 31 January 2009. From 2236 citations, 227 relevant full-text articles were screened in detail; 154 papers fulfilled the inclusion criteria, from which conclusions were drawn on the management of infected joints in children. Our review showed that no single investigation, including joint aspiration, is sufficiently reliable to diagnose conclusively joint infection. The roles of aspiration, arthrotomy and arthroscopy in treatment are not clear cut, and the ideal duration of antibiotic therapy is not yet fully defined. These issues are discussed. Further large-scale, multi-centre studies are needed to delineate the optimal management of paediatric septic arthritis.
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
Methicillin-resistant Staphylococcus aureus (MRSA) has become a ubiquitous bacterium in both the hospital and community setting. There are two major subclassifications of MRSA, community-acquired and healthcare-acquired, each with differing pathogenicity and management. MRSA is increasingly responsible for infections in otherwise healthy, active adults. Local outbreaks affect both professional and amateur athletes and there is increasing public awareness of the issue. Health-acquired MRSA has major cost and outcome implications for patients and hospitals. The increasing prevalence and severity of MRSA means that the orthopaedic community should have a basic knowledge of the bacterium, its presentation and options for treatment. This paper examines the evolution of MRSA, analyses the spectrum of diseases produced by this bacterium and presents current prevention and treatment strategies for orthopaedic infections from MRSA.
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries. This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.
This review discusses the pathogenesis and surgical treatment of tears of the rotator cuff.
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
Polymethylmethacrylate remains one of the most enduring materials in orthopaedic surgery. It has a central role in the success of total joint replacement and is also used in newer techniques such as percutaneous vertebroplasty and kyphoplasty. This article describes the current uses and limitations of polymethylmethacrylate in orthopaedic surgery. It focuses on its mechanical and chemical properties and links these to its clinical performance. The behaviour of antibiotic-loaded bone cement are discussed, together with areas of research that are now shedding light upon the behaviour of this unique biomaterial.
The menisci of the knee have an important role in load-bearing and shock absorption within the joint. They may also function as secondary stabilisers, have a proprioceptive role, and aid the lubrication and nutrition of the articular cartilage. Complete or partial loss of a meniscus can have damaging effects on a knee, leading to serious long-term sequelae. This paper reviews the consequences of meniscectomy and summarises the body of evidence in the literature regarding those factors most relevant to long-term outcome.